melitten has been researched along with aminoarabinose* in 2 studies
2 other study(ies) available for melitten and aminoarabinose
Article | Year |
---|---|
Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cenocepacia(†).
One common mechanism of resistance against antimicrobial peptides in Gram-negative bacteria is the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) to the lipopolysaccharide (LPS) molecule. Burkholderia cenocepacia exhibits extraordinary intrinsic resistance to antimicrobial peptides and other antibiotics. We have previously discovered that unlike other bacteria, B. cenocepacia requires L-Ara4N for viability. Here, we describe the isolation of B. cenocepacia suppressor mutants that remain viable despite the deletion of genes required for L-Ara4N synthesis and transfer to the LPS. The absence of L-Ara4N is the only structural difference in the LPS of the mutants compared with that of the parental strain. The mutants also become highly sensitive to polymyxin B and melittin, two different classes of antimicrobial peptides. The suppressor phenotype resulted from a single amino acid replacement (aspartic acid to histidine) at position 31 of LptG, a protein component of the multi-protein pathway responsible for the export of the LPS molecule from the inner to the outer membrane. We propose that L-Ara4N modification of LPS provides a molecular signature required for LPS export and proper assembly at the outer membrane of B. cenocepacia, and is the most critical determinant for the intrinsic resistance of this bacterium to antimicrobial peptides. Topics: Anti-Infective Agents; Arabinose; Biological Transport; Burkholderia cenocepacia; Drug Resistance, Bacterial; Lipopolysaccharides; Melitten; Microbial Sensitivity Tests; Polymyxin B | 2012 |
The Salmonella typhi melittin resistance gene pqaB affects intracellular growth in PMA-differentiated U937 cells, polymyxin B resistance and lipopolysaccharide.
Salmonella typhi is the causative agent of typhoid fever in humans. A cell-culture based assay involving the human monocyte macrophage cell line U937 has been developed to examine S. typhi invasion and survival. An S. typhi PhoP- (null) mutant was shown to be restricted in net growth in phorbol myristate acetate (PMA) differentiated U937 (PMA-U937) cells, and an S. typhi PhoPc (constitutive) mutant showed a defect in invasion. Neither of the phoP/Q mutants were growth impaired in HeLa cells, however the PhoPc mutant was impaired in invasion. As opposed to what was found for S. typhi, Salmonella typhimurium wild-type, PhoP- and PhoPc mutants grew equally well in PMA-U937 cells, indicating that the PhoP(-)-mediated net growth restriction in the PMA-U937 cells was S. typhi specific. An S. typhi mutation, pqaB::MudJ, recently shown to be a PhoP-activated locus, was shown to have a net growth defect in PMA-U937 cells. Sequencing of the S. typhipqaB gene revealed it had 98% identity to the fifth gene in a S. typhimurium PmrA/B regulated operon necessary for 4-aminoarabinose lipid A modification and polymyxin B resistance. The pqaB locus was regulated by PmrA/B (whose activity is modulated by PhoP-PhoQ) and the pqaB transposon mutant was sensitive to polymyxin B. The lipopolysaccharides (LPS) of S. typhi and S. typhimurium wild-type, PhoP- and PhoPc mutants, were compared by SDS-PAGE and silver staining. Differences in the LPS profile between the two Salmonella species were observed, and shown to be affected differently by the PhoPc mutation. Additionally, the pqaB::MudJ mutation affected S. typhi LPS. The effects on LPS may have ramifications for the difference between S. typhi and S. typhimurium infection of hosts. Topics: Anti-Bacterial Agents; Arabinose; DNA Transposable Elements; Drug Resistance, Microbial; Gene Expression Regulation, Bacterial; HeLa Cells; Humans; L-Lactate Dehydrogenase; Lipid A; Lipopolysaccharides; Macrophages; Melitten; Molecular Sequence Data; Polymyxin B; Salmonella typhi; Salmonella typhimurium; Tetradecanoylphorbol Acetate; U937 Cells; Virulence | 1999 |