melitten and 1-3-dipalmitoyl-2-phosphatidylcholine

melitten has been researched along with 1-3-dipalmitoyl-2-phosphatidylcholine* in 1 studies

Other Studies

1 other study(ies) available for melitten and 1-3-dipalmitoyl-2-phosphatidylcholine

ArticleYear
Lytic effects of melittin and delta-haemolysin from Staphylococcus aureus on vesicles of dipalmitoylphosphatidylcholine.
    Biochimica et biophysica acta, 1986, Mar-27, Volume: 856, Issue:1

    The effects of the lytic peptides, melittin and delta-haemolysin, are compared in vesicles of gel-phase dipalmitoylphosphatidylcholine (DPPC), using calcein as trapped marker. At low concentration, both toxins cause vesicles to lose contents in 5 mM phosphate buffer near neutral pH, with melittin being the more active. As phosphate concentration is increased, the kinetics of melittin-induced leakage change from a slow, sustained loss to a rapid 'burst' of leakage when melittin is present mainly as tetramer in solution, under conditions where it is reported to lose haemolytic activity towards erythrocytes. At low phosphate concentration, the leakage induced by delta-haemolysin is preceded by a lag phase, though fluorescence measurements show that binding of toxin is rapid. At higher phosphate concentration, the toxin binds rapidly to vesicles, but causes no leakage of entrapped calcein. Steady-state fluorescence spectra show no obvious differences in tryptophan emission for delta-haemolysin bound to lipid in high- or low-phosphate buffer. Spin-label fluorescence-quenching studies show that the single tryptophan residue of delta-haemolysin is buried within the lipid bilayer at all phosphate concentrations used. In gel-phase DPPC, delta-haemolysin shows no tendency to cause vesicle aggregation over several hours, as judged by light scattering, though a slow non-linear effect is seen above the lipid phase transition temperature. These effects are contrasted with those of melittin under similar conditions.

    Topics: 1,2-Dipalmitoylphosphatidylcholine; Bacterial Proteins; Bee Venoms; Cell Membrane; Fluoresceins; Hemolysin Proteins; Hemolysis; Hydrogen-Ion Concentration; Kinetics; Lipid Bilayers; Melitten; Phosphatidylcholines; Scattering, Radiation; Spectrometry, Fluorescence

1986