melitten and 1-2-diphytanoylphosphatidylcholine

melitten has been researched along with 1-2-diphytanoylphosphatidylcholine* in 2 studies

Other Studies

2 other study(ies) available for melitten and 1-2-diphytanoylphosphatidylcholine

ArticleYear
Studying the Mechanics of Membrane Permeabilization through Mechanoelectricity.
    ACS applied materials & interfaces, 2022, Feb-02, Volume: 14, Issue:4

    In this research, real-time monitoring of lipid membrane disruption is made possible by exploiting the dynamic properties of model lipid bilayers formed at oil-water interfaces. This involves tracking an electrical signal generated through rhythmic membrane perturbation translated into the adsorption and penetration of charged species within the membrane. Importantly, this allows for the detection of membrane surface interactions that occur prior to pore formation that may be otherwise undetected. The requisite dynamic membranes for this approach are made possible through the droplet interface bilayer (DIB) technique. Membranes are formed at the interface of lipid monolayer-coated aqueous droplets submerged in oil. We present how cyclically alternating the membrane area leads to the generation of mechanoelectric current. This current is negligible without a transmembrane voltage until a composition mismatch between the membrane monolayers is produced, such as a one-sided accumulation of disruptive agents. The generated mechanoelectric current is then eliminated when an applied electric field compensates for this asymmetry, enabling measurement of the transmembrane potential offset. Tracking the compensating voltage with respect to time then reveals the gradual accumulation of disruptive agents prior to membrane permeabilization. The innovation of this work is emphasized in its ability to continuously track membrane surface activity, highlighting the initial interaction steps of membrane disruption. In this paper, we begin by validating our proposed approach against measurements taken for fixed composition membranes using standard electrophysiological techniques. Next, we investigate surfactant adsorption, including hexadecyltrimethylammonium bromide (CTAB, cationic) and sodium decyl sulfate (SDS, anionic), demonstrating the ability to track adsorption prior to disruption. Finally, we investigate the penetration of lipid membranes by melittin, confirming that the peptide insertion and disruption mechanics are, in part, modulated by membrane composition.

    Topics: Cetrimonium; Electric Capacitance; Electrophysiology; Lipid Bilayers; Melitten; Permeability; Phosphatidylcholines; Sodium Dodecyl Sulfate; Static Electricity; Surface-Active Agents

2022
Energetics of pore formation induced by membrane active peptides.
    Biochemistry, 2004, Mar-30, Volume: 43, Issue:12

    Antimicrobial peptides are known to form pores in cell membranes. We study this process in model bilayers of various lipid compositions. We use two of the best-studied peptides, alamethicin and melittin, to represent peptides making two types of pores, that is, barrel-stave pores and toroidal pores. In both cases, the key control variable is the concentration of the bound peptides in the lipid bilayers (expressed in the peptide-lipid molar ratio, P/L). The method of oriented circular dichroism (OCD) was used to monitor the peptide orientation in bilayers as a function of P/L. The same samples were scanned by X-ray diffraction to measure the bilayer thickness. In all cases, the bilayer thickness decreases linearly with P/L and then levels off after P/L exceeds a lipid-dependent critical value, (P/L)*. OCD spectra showed that the helical peptides are oriented parallel to the bilayers as long as P/L < (P/L)*, but as P/L increases over (P/L)*, an increasing fraction of peptides changed orientation to become perpendicular to the bilayer. We analyzed the data by assuming an internal membrane tension associated with the membrane thinning. The free energy containing this tension term leads to a relation explaining the P/L-dependence observed in the OCD and X-ray diffraction measurements. We extracted the experimental parameters from this thermodynamic relation. We believe that they are the quantities that characterize the peptide-lipid interactions related to the mechanism of pore formation. We discuss the meaning of these parameters and compare their values for different lipids and for the two different types of pores. These experimental parameters are useful for further molecular analysis and are excellent targets for molecular dynamic simulation studies.

    Topics: Alamethicin; Animals; Anti-Bacterial Agents; Circular Dichroism; Ion Channels; Lipid Bilayers; Melitten; Membranes, Artificial; Models, Chemical; Phosphatidylcholines; Protein Binding; Spectroscopy, Fourier Transform Infrared; Thermodynamics; X-Ray Diffraction

2004