melatonin has been researched along with pk 11195 in 13 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 3 (23.08) | 18.2507 |
2000's | 5 (38.46) | 29.6817 |
2010's | 5 (38.46) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Altenbach, RJ; Brioni, JD; Carr, TL; Chandran, P; Cowart, MD; Esbenshade, TA; Honore, P; Hsieh, GC; Lewis, LG; Liu, H; Manelli, AM; Marsh, KC; Milicic, I; Miller, TR; Strakhova, MI; Vortherms, TA; Wakefield, BD; Wetter, JM; Witte, DG | 1 |
Anzini, M; Brogi, S; Butini, S; Campiani, G; Cappelli, A; Caselli, G; Castriconi, F; Gemma, S; Giordani, A; Giorgi, G; Giuliani, G; Lanza, M; Letari, O; Makovec, F; Manini, M; Mennuni, L; Valenti, S | 1 |
Belyakov, S; Dambrova, M; Kazoka, H; Kuznecovs, J; Lebedev, A; Liepinsh, E; Mishnev, A; Orlova, N; Ponomaryov, Y; Vavers, E; Veinberg, G; Vikainis, S; Vilskersts, R; Vorona, M; Zvejniece, L | 1 |
Bednarski, M; Gunia-Krzyżak, A; Marona, H; Nitek, W; Pękala, E; Powroźnik, B; Słoczyńska, K; Walczak, M; Waszkielewicz, AM; Żesławska, E | 1 |
Filipek, B; Gunia-Krzyżak, A; Marona, H; Nitek, W; Pańczyk, K; Pękala, E; Rapacz, A; Słoczyńska, K; Waszkielewicz, AM; Żelaszczyk, D; Żesławska, E | 1 |
Ekström, P; Grossmann, E; Meissl, H; Yáñez, J | 1 |
Niles, LP; Tenn, CC | 1 |
Kulkarni, SK; Raghavendra, V | 1 |
Kaur, G; Kulkarni, SK; Raghavendra, V | 1 |
Agrewala, JN; Kulkarni, SK; Raghavendra, V; Singh, V | 1 |
Kulkarni, SK; Naidu, PS; Raghavendra, V | 1 |
Kelso, ML; Pauly, JR; Scheff, NN; Scheff, SW | 1 |
13 other study(ies) available for melatonin and pk 11195
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
cis-4-(Piperazin-1-yl)-5,6,7a,8,9,10,11,11a-octahydrobenzofuro[2,3-h]quinazolin-2-amine (A-987306), a new histamine H4R antagonist that blocks pain responses against carrageenan-induced hyperalgesia.
Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Benzofurans; Carrageenan; Disease Models, Animal; Drug Design; Drug Evaluation, Preclinical; Humans; Hyperalgesia; Ligands; Mice; Molecular Structure; Pain; Peritonitis; Quinazolines; Rats; Receptors, G-Protein-Coupled; Receptors, Histamine; Receptors, Histamine H4; Stereoisomerism; Structure-Activity Relationship | 2008 |
Synthesis and structure-activity relationship studies in serotonin 5-HT(1A) receptor agonists based on fused pyrrolidone scaffolds.
Topics: Animals; Area Under Curve; Humans; Intestinal Absorption; Ligands; Male; Metabolic Clearance Rate; Models, Chemical; Models, Molecular; Molecular Structure; Protein Binding; Protein Structure, Tertiary; Pyrrolidinones; Radioligand Assay; Receptor, Serotonin, 5-HT1A; Receptors, Serotonin, 5-HT3; Serotonin 5-HT1 Receptor Agonists; Structure-Activity Relationship | 2013 |
Synthesis and biological evaluation of 2-(5-methyl-4-phenyl-2-oxopyrrolidin-1-yl)-acetamide stereoisomers as novel positive allosteric modulators of sigma-1 receptor.
Topics: Acetamides; Allosteric Regulation; Animals; Rats; Rats, Wistar; Receptors, sigma; Sigma-1 Receptor; Stereoisomerism; Structure-Activity Relationship | 2013 |
Design, physico-chemical properties and biological evaluation of some new N-[(phenoxy)alkyl]- and N-{2-[2-(phenoxy)ethoxy]ethyl}aminoalkanols as anticonvulsant agents.
Topics: Amino Alcohols; Animals; Anticonvulsants; Chemistry, Physical; Dose-Response Relationship, Drug; Drug Design; Epilepsy; Male; Mice; Microsomes, Liver; Molecular Structure; Pilocarpine | 2016 |
Structure-anticonvulsant activity studies in the group of (E)-N-cinnamoyl aminoalkanols derivatives monosubstituted in phenyl ring with 4-Cl, 4-CH
Topics: Amino Alcohols; Animals; Anticonvulsants; Crystallography, X-Ray; Disease Models, Animal; Dose-Response Relationship, Drug; Electroshock; Mice; Models, Molecular; Molecular Structure; Rats; Seizures; Structure-Activity Relationship | 2017 |
Benzodiazepines influence melatonin secretion of the pineal organ of the trout in vitro.
Topics: 5-Methoxytryptamine; Animals; Benzodiazepines; Calcium; Clonazepam; Culture Media; Dark Adaptation; Diazepam; Flumazenil; Hydroxyindoleacetic Acid; In Vitro Techniques; Indoles; Isoquinolines; Light; Magnesium; Melatonin; Oncorhynchus mykiss; Pineal Gland | 1994 |
Central-type benzodiazepine receptors mediate the antidopaminergic effect of clonazepam and melatonin in 6-hydroxydopamine lesioned rats: involvement of a GABAergic mechanism.
Topics: Animals; Apomorphine; Behavior, Animal; Bicuculline; Clonazepam; Corpus Striatum; Dopamine Agonists; Flumazenil; Flunitrazepam; gamma-Aminobutyric Acid; Isoquinolines; Male; Melatonin; Oxidopamine; Rats; Rats, Sprague-Dawley; Receptors, GABA-A | 1995 |
Reversal of morphine tolerance and dependence by melatonin: possible role of central and peripheral benzodiazepine receptors.
Topics: Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Drug Administration Schedule; Drug Tolerance; Female; Flumazenil; GABA Modulators; GABA-A Receptor Antagonists; Isoquinolines; Melatonin; Mice; Mice, Inbred BALB C; Morphine; Morphine Dependence; Narcotics; Receptors, GABA-A | 1999 |
Anti-depressant action of melatonin in chronic forced swimming-induced behavioral despair in mice, role of peripheral benzodiazepine receptor modulation.
Topics: Alprazolam; Analysis of Variance; Animals; Anti-Anxiety Agents; Antioxidants; Benzodiazepinones; Bicuculline; Convulsants; Depression; Disease Models, Animal; Drug Interactions; Drug Therapy, Combination; Flumazenil; GABA Agents; Immobilization; Isoquinolines; Male; Melatonin; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Receptors, GABA-A; Swimming; Time Factors | 2000 |
Melatonin enhances Th2 cell mediated immune responses: lack of sensitivity to reversal by naltrexone or benzodiazepine receptor antagonists.
Topics: Animals; Cell Line; Central Nervous System Agents; Cytokines; Enzyme-Linked Immunosorbent Assay; Female; Flumazenil; GABA-A Receptor Antagonists; Hybridomas; Immunoglobulin G; Isoquinolines; Melatonin; Mice; Mice, Inbred BALB C; Naltrexone; Narcotic Antagonists; Ovalbumin; Peripheral Nervous System Agents; Receptors, Opioid, mu; Th2 Cells | 2001 |
Reversal of reserpine-induced vacuous chewing movements in rats by melatonin: involvement of peripheral benzodiazepine receptors.
Topics: Adrenergic alpha-Antagonists; Adrenergic Uptake Inhibitors; Animals; Antineoplastic Agents; Dose-Response Relationship, Drug; Drug Interactions; Dyskinesia, Drug-Induced; Flumazenil; GABA Modulators; GABA-A Receptor Agonists; gamma-Aminobutyric Acid; Isoquinolines; Male; Mastication; Melatonin; Neostriatum; Prazosin; Rats; Rats, Wistar; Receptors, Cell Surface; Receptors, Cytoplasmic and Nuclear; Receptors, GABA-A; Receptors, Melatonin; Reserpine; Tryptamines | 2001 |
Melatonin and minocycline for combinatorial therapy to improve functional and histopathological deficits following traumatic brain injury.
Topics: Animals; Anti-Bacterial Agents; Antioxidants; Avoidance Learning; Brain Injuries; Cerebral Cortex; Disease Models, Animal; Drug Interactions; Drug Therapy, Combination; Escape Reaction; In Situ Nick-End Labeling; Isoquinolines; Male; Melatonin; Minocycline; Protein Binding; Rats; Rats, Sprague-Dawley; Reaction Time; Time Factors; Tritium | 2011 |