mdl-73811 and hypusine
mdl-73811 has been researched along with hypusine* in 2 studies
Other Studies
2 other study(ies) available for mdl-73811 and hypusine
Article | Year |
---|---|
The role of hypusine depletion in cytostasis induced by S-adenosyl-L-methionine decarboxylase inhibition: new evidence provided by 1-methylspermidine and 1,12-dimethylspermine.
The abilities of the natural polyamines, spermidine and spermine, and of the synthetic analogues, 1-methylspermidine and 1,12-dimethylspermine, to reverse the effects of the S-adenosyl-L-methionine decarboxylase inhibitor 5'-([(Z)-4-aminobut-2-enyl]methylamino)-5'-deoxyadenosine (AbeAdo) on L1210-cell growth were studied. L1210 cells were exposed to AbeAdo for 12 days to induce cytostasis and then exposed to spermidine, spermine, 1-methylspermidine or 1,12-dimethylspermine in the continued presence of AbeAdo. AbeAdo-induced cytostasis was overcome by the natural polyamines, spermidine and spermine. The cytostasis was also reversed by 1-methylspermidine. 1,12-Dimethylspermine had no effect on the AbeAdo-induced cytostasis of chronically treated cells, although it was active in permitting growth of cells treated with the ornithine decarboxylase inhibitor, alpha-difluoromethylornithine. The initial 12-day exposure to AbeAdo elevated intracellular putrescine levels, depleted intracellular spermidine and spermine, and resulted in the accumulation of unmodified eukaryotic translation initiation factor 5A (eIF-5A). Exposure of these cells to exogenous spermidine, which is the natural substrate for deoxyhypusine synthase, resulted in a decrease in the unmodified eIF-5A content. 1-Methylspermidine, which was found to be a substrate of deoxyhypusine synthase in vitro, also decreased the levels of unmodified eIF-5A in the AbeAdo-treated cells. Although spermine is not a substrate of deoxyhypusine synthase, spermine was converted into spermidine in the L1210 cells, and spermine addition to AbeAdo-treated cells resulted in the appearance of both intracellular spermine and spermidine and in the decrease in unmodified eIF-5A. Exogenous 1,12-dimethylspermine, which was not metabolized to spermine or to 1-methylspermidine and was not a substrate of deoxyhypusine synthase in vitro, did not decrease levels of unmodified eIF-5A. The finding that AbeAdo-induced cytostasis was only reversed by polyamines and polyamine analogues that result in the formation of hypusine or an analogue in eIF-5A is consistent with the hypothesis [Byers, Wiest, Wechter and Pegg (1993) Biochem. J. 290, 115-121] that AbeAdo-induced cytostasis is due to the depletion of the hypusine-containing form of eIF-5A, which is secondary to the depletion of spermidine by inhibition of S-adenosyl-L-methionine decarboxylase. Topics: Adenosylmethionine Decarboxylase; Animals; Cell Division; CHO Cells; Chromatography, High Pressure Liquid; Cricetinae; Deoxyadenosines; Eflornithine; Eukaryotic Translation Initiation Factor 5A; Leukemia L1210; Lysine; Oxidoreductases Acting on CH-NH Group Donors; Peptide Initiation Factors; RNA-Binding Proteins; Spermidine; Spermine; Substrate Specificity; Tumor Cells, Cultured | 1994 |
Cytostasis induced in L1210 murine leukaemia cells by the S-adenosyl-L-methionine decarboxylase inhibitor 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine may be due to hypusine depletion.
The effects of inhibition of the capacity to form spermidine and spermine on cell growth were investigated using murine leukaemia L1210 cells and 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine (MDL 73811, AbeAdo), an enzyme-activated irreversible inhibitor of S-adenosyl-L-methionine decarboxylase. Putrescine levels were increased 80-fold, and spermidine and spermine levels were greatly reduced after a 3-day exposure to a maximally inhibitory dose of 10 microM-AbeAdo. Addition of AbeAdo to the culture medium inhibited the growth of L1210 cells measured 3 days later in a dose-dependent manner, but, even at a dose of 10 microM, which was maximally effective, exposure to AbeAdo was not immediately cytostatic. However, the growth rate of L1210 cells chronically exposed to 10 microM-AbeAdo declined steadily until day 12, when the cells stopped growing. L1210 cells exposed to AbeAdo for 12 days could not be rescued from cytostasis by removal of the drug from the culture, but could be rescued by exposure to exogenous spermidine or spermine, indicating that the growth-inhibitory effects of AbeAdo were a result of spermidine and/or spermine depletion. It is suggested that elevated intracellular putrescine in AbeAdo-treated cells sustained limited growth in the absence of physiological levels of spermidine and spermine until certain critical and specific physiological role(s) fulfilled by spermidine (and/or spermine) became deficient resulting in cytostasis. N-(3-Aminopropyl)-1,4-diamino-cis-but-2-ene, a spermidine analogue that is a substrate for deoxyhypusine synthase, was able to mimic the effects of spermidine in reversing AbeAdo-induced cytostasis. Spermidine analogues such as 5,5-dimethylspermidine, which are not substrates for deoxyhypusine synthase, were not active in this way. These results provide evidence that the formation of hypusine in the protein-synthesis initiation factor eIF-5A may be a critical role of spermidine essential for cell growth. Topics: Adenosylmethionine Decarboxylase; Animals; Cell Division; Deoxyadenosines; Kinetics; Leukemia L1210; Lysine; Mice; Oxidoreductases Acting on CH-NH Group Donors; Polyamines; Tumor Cells, Cultured | 1992 |