mast-cell-degranulating-peptide has been researched along with iberiotoxin* in 2 studies
2 other study(ies) available for mast-cell-degranulating-peptide and iberiotoxin
Article | Year |
---|---|
Characterization of Ca(2+)-inhibited potassium channels in the LNCaP human prostate cancer cell line.
Potassium plasma membrane channels have been studied in the LNCaP androgen-sensitive human prostate cancer cell line, derived from a lymph node of a subject with metastatic carcinoma of the prostate. Membrane currents were recorded by the patchclamp technique, using the cell-attached, cell-free and whole-cell mode. A voltage-dependent, non-inactivating potassium channel (delayed rectifier) was the most commonly observed ion channel in LNCaP cells. The slope conductance of K+ channels in a symmetrical 140 mM K+ gradient was 78 pS. In excised inside-out patches, the channel was inhibited by increasing the cytoplasmic Ca2+ concentration (with half-block at 0.5 microM Ca2+) over a wide range of membrane potentials. The K+ channel had a high sensitivity to tetraethylammonium (TEA), that reduced the single channel conductance with Kd of 280 +/- 27 microM. The K+ channel open probability was inhibited by alpha-dendrotoxin (DTX) (with a half-blocking concentration of approximately 5 nM) and mast cell degranulating peptide (MCDP) (with half-blocking concentration of approximately 70 nM) at all membrane potentials and with very slow reversibility. In view of the biophysical and pharmacological properties of K+ channels in LNCaP cells, it is not possible to classify these channels as one of the previously characterized types of voltage- or ligand-gated K+ channels in other cell lines. Topics: Adenocarcinoma; Calcium; Charybdotoxin; Elapid Venoms; Humans; Ion Channel Gating; Ion Transport; Lymphatic Metastasis; Male; Neoplasm Proteins; Neoplasms, Hormone-Dependent; Patch-Clamp Techniques; Peptides; Potassium Channel Blockers; Prostatic Neoplasms; Quinidine; Tetraethylammonium; Tumor Cells, Cultured | 1999 |
Potassium currents in freshly dissociated uterine myocytes from nonpregnant and late-pregnant rats.
In freshly dissociated uterine myocytes, the outward current is carried by K+ through channels highly selective for K+. Typically, nonpregnant myocytes have rather noisy K+ currents; half of them also have a fast-inactivating transient outward current (ITO). In contrast, the current records are not noisy in late pregnant myocytes, and ITO densities are low. The whole-cell IK of nonpregnant myocytes respond strongly to changes in [Ca2+]o or changes in [Ca2+]i caused by photolysis of caged Ca2+ compounds, nitr 5 or DM-nitrophene, but that of late-pregnant myocytes respond weakly or not at all. The Ca2+ insensitivity of the latter is present before any exposure to dissociating enzymes. By holding at -80, -40, or 0 mV and digital subtractions, the whole-cell IK of each type of myocyte can be separated into one noninactivating and two inactivating components with half-inactivation at approximately -61 and -22 mV. The noninactivating components, which consist mainly of iberiotoxin-susceptible large-conductance Ca2+-activated K+ currents, are half-activated at 39 mV in nonpregnant myocytes, but at 63 mV in late-pregnant myocytes. In detached membrane patches from the latter, identified 139 pS, Ca2+-sensitive K+ channels also have a half-open probability at 68 mV, and are less sensitive to Ca2+ than similar channels in taenia coli myocytes. Ca2+-activated K+ currents, susceptible to tetraethylammonium, charybdotoxin, and iberiotoxin contribute 30-35% of the total IK in nonpregnant myocytes, but <20% in late-pregnant myocytes. Dendrotoxin-susceptible, small-conductance delayed rectifier currents are not seen in nonpregnant myocytes, but contribute approximately 20% of total IK in late-pregnant myocytes. Thus, in late-pregnancy, myometrial excitability is increased by changes in K+ currents that include a suppression of the ITO, a redistribution of IK expression from large-conductance Ca2+-activated channels to smaller-conductance delayed rectifier channels, a lowered Ca2+ sensitivity, and a positive shift of the activation of some large-conductance Ca2+-activated channels. Topics: 4-Aminopyridine; Animals; Apamin; Calcium; Charybdotoxin; Elapid Venoms; Female; In Vitro Techniques; Kinetics; Membrane Potentials; Myometrium; Peptides; Photolysis; Potassium Channels; Pregnancy; Pregnancy, Animal; Rats; Tetraethylammonium | 1998 |