marneral has been researched along with thalianol* in 3 studies
3 other study(ies) available for marneral and thalianol
Article | Year |
---|---|
Natural herbicidal alkaloid berberine regulates the expression of thalianol and marneral gene clusters in Arabidopsis thaliana.
Berberine is a plant-derived herbicidal alkaloid. The herbicidal mechanism of berberine is still not clear. In this study, our aim is to clarify the mechanism of berberine inhibiting the root growth of Arabidopsis thaliana, aiming at providing new insight into identifying the molecular targets of berberine.. The whole-genome RNA sequencing had revealed that 403 genes were down-regulated, and 422 genes were up-regulated in Arabidopsis roots with berberine treatment. According to KEGG and GO analysis, the expression of two genes AT5G48010 (Thas) and AT5G42600 (MRN1) which are in the sesquiterpenoid and triterpenoid biosynthesis pathway were affected most. These two genes belong to thalianol and marneral gene clusters. RT-PCR showed that Arabidopsis responds to berberine by inhibiting root growth through repressing the expression of thalianol and marneral gene clusters, which was independent of the upstream effectors ARP6 and HTA9-1. GC-MS analysis showed that berberine could inhibit THAH in the biosynthetic network of triterpenoid gene cluster in Arabidopsis and thus cause the accumulation of thalianol.. Our study indicated the repression of the thalianol and marneral gene clusters as the primary mechanism of action of berberine in Arabidopsis, which may result in plant growth defects by interrupting the thalianol metabolic pathway. This provides novel clues as to the possible molecular herbicidal mechanism of berberine. © 2022 Society of Chemical Industry. Topics: Arabidopsis; Arabidopsis Proteins; Berberine; Gene Expression Regulation, Plant; Herbicides; Multigene Family; Triterpenes | 2022 |
Delineation of metabolic gene clusters in plant genomes by chromatin signatures.
Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi. Topics: Arabidopsis; Arabidopsis Proteins; Avena; Chromatin; Chromosome Mapping; Gene Expression Regulation, Plant; Genome, Plant; High-Throughput Nucleotide Sequencing; Histones; Metabolic Networks and Pathways; Multigene Family; Plant Roots; Seedlings; Triterpenes; Zea mays | 2016 |
Formation of plant metabolic gene clusters within dynamic chromosomal regions.
In bacteria, genes with related functions often are grouped together in operons and are cotranscribed as a single polycistronic mRNA. In eukaryotes, functionally related genes generally are scattered across the genome. Notable exceptions include gene clusters for catabolic pathways in yeast, synthesis of secondary metabolites in filamentous fungi, and the major histocompatibility complex in animals. Until quite recently it was thought that gene clusters in plants were restricted to tandem duplicates (for example, arrays of leucine-rich repeat disease-resistance genes). However, operon-like clusters of coregulated nonhomologous genes are an emerging theme in plant biology, where they may be involved in the synthesis of certain defense compounds. These clusters are unlikely to have arisen by horizontal gene transfer, and the mechanisms behind their formation are poorly understood. Previously in thale cress (Arabidopsis thaliana) we identified an operon-like gene cluster that is required for the synthesis and modification of the triterpene thalianol. Here we characterize a second operon-like triterpene cluster (the marneral cluster) from A. thaliana, compare the features of these two clusters, and investigate the evolutionary events that have led to cluster formation. We conclude that common mechanisms are likely to underlie the assembly and control of operon-like gene clusters in plants. Topics: Acyltransferases; Arabidopsis; Arabidopsis Proteins; Chromosome Mapping; Chromosomes, Plant; Cytochrome P-450 Enzyme System; Gas Chromatography-Mass Spectrometry; Gene Duplication; Gene Expression Regulation, Plant; Genome, Plant; Intramolecular Transferases; Models, Genetic; Molecular Structure; Multigene Family; Mutation; Phylogeny; Plant Leaves; Plant Roots; Plants, Genetically Modified; Triterpenes | 2011 |