mannose has been researched along with malondialdehyde in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 2 (33.33) | 24.3611 |
2020's | 4 (66.67) | 2.80 |
Authors | Studies |
---|---|
Lu, X; Nie, Y; Ren, D; Sun, Y; Yang, X; Zhao, Y | 1 |
Guo, Y; Jin, R; Wang, H; Xu, B; Yuan, C | 1 |
Chun, C; Qiang, H; Xiong, F; Yu-Hao, D | 1 |
Eisa, NH; El-Dosoky, M; El-Mesery, A; El-Mesery, M; El-Mowafy, M; El-Shafey, M; Elgaml, A; Shaker, ME | 1 |
Fan, YN; Gao, QH; Guo, YQ; Tao, XJ; Yang, JJ; Zhang, YN | 1 |
Gao, M; Gao, Z; Li, Z; Wang, Z; Wu, C; Wu, J; Zhan, X; Zhu, L | 1 |
6 other study(ies) available for mannose and malondialdehyde
Article | Year |
---|---|
Chemical composition of Pleurotus eryngii polysaccharides and their inhibitory effects on high-fructose diet-induced insulin resistance and oxidative stress in mice.
Topics: Animals; Antioxidants; Blood Glucose; Chromatography, High Pressure Liquid; Disease Models, Animal; Dyslipidemias; Fatty Liver; Fructose; Galactose; Glucose; Glutathione Peroxidase; Hyperglycemia; Hyperinsulinism; Insulin; Insulin Resistance; Lipid Peroxidation; Liver; Male; Malondialdehyde; Mannose; Mice; Oxidative Stress; Pleurotus; Polysaccharides; Superoxide Dismutase | 2014 |
Physicochemical properties of polysaccharides separated from Camellia oleifera Abel seed cake and its hypoglycemic activity on streptozotocin-induced diabetic mice.
Topics: Animals; Antioxidants; Blood Glucose; Camellia; Catalase; Diabetes Mellitus, Experimental; Glucose; Glutathione Peroxidase; Hyperlipidemias; Hypoglycemic Agents; Liquid-Liquid Extraction; Liver; Male; Malondialdehyde; Mannose; Mice; Plant Extracts; Polysaccharides; Rhamnose; Seeds; Streptozocin; Superoxide Dismutase; Xylose | 2019 |
Study on a novel spherical polysaccharide from Fructus Mori with good antioxidant activity.
Topics: Amidines; Animals; Antioxidants; Carbohydrate Sequence; Chemical Fractionation; Complex Mixtures; Fruit; Galactose; Glucose; Hexuronic Acids; Liver; Malondialdehyde; Mannose; Mice; Molecular Weight; Morus; Oxidants; Plant Extracts; Polysaccharides | 2021 |
Ingestion of mannose ameliorates thioacetamide-induced intrahepatic oxidative stress, inflammation and fibrosis in rats.
Topics: Animals; Cytokines; Hepatic Stellate Cells; Inflammation; Liver; Liver Cirrhosis; Male; Malondialdehyde; Mannose; Oxidative Stress; Rats; Rats, Sprague-Dawley; Signal Transduction; Thioacetamide | 2021 |
Lycium barbarum Polysaccharides Promotes Mitochondrial Biogenesis and Energy Balance in a NAFLD Cell Model.
Topics: Adenosine Triphosphate; Alanine Transaminase; Aspartate Aminotransferases; Catalase; Drugs, Chinese Herbal; Fatty Acids, Nonesterified; Glucose; Humans; Lycium; Malondialdehyde; Mannose; Non-alcoholic Fatty Liver Disease; Nuclear Respiratory Factor 1; Organelle Biogenesis; Phospholipid Hydroperoxide Glutathione Peroxidase; Polysaccharides; PPAR gamma; RNA, Messenger; Superoxide Dismutase; Triglycerides; Uncoupling Protein 2 | 2022 |
Antioxidant and anti-inflammatory properties of an aminoglycan-rich exopolysaccharide from the submerged fermentation of Bacillus thuringiensis.
Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Arabinose; Bacillus thuringiensis; Biological Control Agents; Cytokines; Fermentation; Galactosamine; Glucosamine; Glucose; Glutathione Peroxidase; Lipopolysaccharides; Malondialdehyde; Mannose; Mice; Nitric Oxide; Polysaccharides, Bacterial; RAW 264.7 Cells; Superoxide Dismutase; Superoxides | 2022 |