mannose has been researched along with betadex in 16 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (6.25) | 18.2507 |
2000's | 3 (18.75) | 29.6817 |
2010's | 10 (62.50) | 24.3611 |
2020's | 2 (12.50) | 2.80 |
Authors | Studies |
---|---|
Nakanishi, H; Yamagaki, T | 1 |
Baussanne, I; Benito, JM; Defaye, J; García Fernández, JM; Ortiz Mellet, C | 1 |
Demailly, G; Djedaïni-Pilard, F; Moreau, V; Yockot, D | 1 |
Benito, JM; Chmurski, K; Defaye, J; García Fernández, JM; Gómez-García, M; Gutiérrez Gallego, R; Maestre, A; Ortiz Mellet, C; Rodríguez-Lucena, D; Yu, JX | 1 |
Barylyuk, K; Collot, M; Grünstein, D; Kamena, F; Kikkeri, R; Lepenies, B; Maglinao, M; Seeberger, PH; Zenobi, R | 1 |
Benito, JM; Butera, AP; García Fernández, JM; Gómez-García, M; Jiménez Blanco, JL; Ortiz Mellet, C | 1 |
Galla, HJ; Kauscher, U; Ravoo, BJ; Roling, O; Seelheim, P; Wendeln, C | 1 |
Chua, KL; Hsu, LY; Kang, ET; Leong, DT; Li, M; Neoh, KG; Xu, L; Yuan, L | 1 |
Cheng, W; Coady, DJ; De Libero, G; Hedrick, JL; Krishnamurthy, S; Liu, J; Liu, S; Lu, X; Singhal, A; Yang, C; Yang, YY | 1 |
Bharate, P; Lu, M; Seeberger, PH; Varela-Aramburu, S; Wang, S; Ye, Z; Yin, J; Zhang, Q | 1 |
Alex, C; Bavireddi, H; Chaudhary, PM; Gade, M; Kikkeri, R; Lepenies, B; Sangabathuni, S; Vasudeva Murthy, R | 1 |
Agostoni, V; Aykaç, A; Casas-Solvas, JM; Fenyvesi, É; Gref, R; Malanga, M; Noiray, M; Vargas-Berenguel, A | 1 |
Dahl, JEP; Fokina, NA; Ravoo, BJ; Schibilla, F; Schreiner, PR; Voskuhl, J | 1 |
Becer, CR; Napier, R; Uzunova, V; Yilmaz, G | 1 |
Du, J; Guan, E; Hu, Y; Ji, Z; Li, M; Tan, Z; Tao, J | 1 |
Fujiwara, Y; Higashi, T; Komohara, Y; Mohammed, AFA; Motoyama, K; Ohno, Y; Onodera, R; Toshino, M | 1 |
16 other study(ies) available for mannose and betadex
Article | Year |
---|---|
Influence of stereoisomeric glucose, galactose and mannose residues on fragmentation at their glycosidic linkages in post-source decay fragment analyses for oligosaccharides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometr
Topics: beta-Cyclodextrins; Carbohydrate Sequence; Cyclodextrins; Galactose; Gas Chromatography-Mass Spectrometry; Glucose; Glycosides; Mannose; Molecular Conformation; Molecular Sequence Data; Oligosaccharides; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Stereoisomerism | 1998 |
Dependence of concanavalin A binding on anomeric configuration, linkage type, and ligand multiplicity for thiourea-bridged mannopyranosyl-beta-cyclodextrin conjugates.
Topics: beta-Cyclodextrins; Concanavalin A; Cyclodextrins; Glycoconjugates; Inhibitory Concentration 50; Ligands; Mannose; Molecular Conformation; Thiourea | 2001 |
Synthesis and characterization of mannosyl mimetic derivatives based on a beta-cyclodextrin core.
Topics: beta-Cyclodextrins; Biomimetic Materials; Carbohydrate Conformation; Carbohydrate Sequence; Cyclodextrins; Glycosylation; Magnetic Resonance Spectroscopy; Mannose; Solubility; Spectrometry, Mass, Electrospray Ionization | 2003 |
Probing secondary carbohydrate-protein interactions with highly dense cyclodextrin-centered heteroglycoclusters: the heterocluster effect.
Topics: beta-Cyclodextrins; Carbohydrate Conformation; Carbohydrate Metabolism; Carbohydrates; Concanavalin A; Glucose; Lactose; Mannose; Models, Molecular; Thermodynamics | 2005 |
Hexameric supramolecular scaffold orients carbohydrates to sense bacteria.
Topics: beta-Cyclodextrins; Biosensing Techniques; Carbohydrates; Escherichia coli; Fluorescent Dyes; Mannose; Microscopy, Confocal; Organometallic Compounds; Ruthenium | 2011 |
Probing carbohydrate-lectin recognition in heterogeneous environments with monodisperse cyclodextrin-based glycoclusters.
Topics: beta-Cyclodextrins; Carbohydrate Conformation; Lactose; Mannose; Models, Molecular; Plant Lectins | 2012 |
Layer-by-layer deposition of vesicles mediated by supramolecular interactions.
Topics: beta-Cyclodextrins; Biotin; Click Chemistry; Concanavalin A; Macromolecular Substances; Mannose; Microscopy, Fluorescence; Models, Molecular; Molecular Structure; Particle Size; Proteins; Streptavidin; Surface Properties | 2013 |
Sugar-Grafted Cyclodextrin Nanocarrier as a "Trojan Horse" for Potentiating Antibiotic Activity.
Topics: Acinetobacter baumannii; Anti-Bacterial Agents; Bacteria; Bacterial Infections; beta-Cyclodextrins; Ciprofloxacin; Click Chemistry; Drug Carriers; Drug Resistance, Bacterial; Erythromycin; Glucose; Humans; Mannose; Microbial Sensitivity Tests; Rifampin; Staphylococcus aureus | 2016 |
Broad-Spectrum Antimicrobial Star Polycarbonates Functionalized with Mannose for Targeting Bacteria Residing inside Immune Cells.
Topics: Animals; Anti-Infective Agents; Bacteria; beta-Cyclodextrins; Cations; Hemolysis; Mammals; Mannose; Polycarboxylate Cement; Polymerization; Polymers | 2016 |
Tumour-Targeted Drug Delivery with Mannose-Functionalized Nanoparticles Self-Assembled from Amphiphilic β-Cyclodextrins.
Topics: Antineoplastic Agents; beta-Cyclodextrins; Breast Neoplasms; Cell Line, Tumor; Doxorubicin; Drug Delivery Systems; Female; Humans; Lectins, C-Type; Mannose; Mannose Receptor; Mannose-Binding Lectins; Nanoparticles; Receptors, Cell Surface | 2016 |
Understanding carbohydrate-protein interactions using homologous supramolecular chiral Ru(ii)-glyconanoclusters.
Topics: Animals; beta-Cyclodextrins; Carbohydrates; Cell Line; Dendrimers; HeLa Cells; Humans; Lectins, C-Type; Mannose; Mice; Molecular Structure; Nanostructures; Ruthenium; Tissue Distribution | 2016 |
A non-covalent "click chemistry" strategy to efficiently coat highly porous MOF nanoparticles with a stable polymeric shell.
Topics: beta-Cyclodextrins; Calorimetry; Click Chemistry; Drug Liberation; Iron Compounds; Kinetics; Magnetics; Mannose; Metal Nanoparticles; Microscopy, Confocal; Nanotechnology; Phosphorylation; Porosity; Rhodamines; Solubility; Spectrometry, Fluorescence; Surface Properties; Thermodynamics; Zidovudine | 2017 |
Host-Guest Complexes of Cyclodextrins and Nanodiamonds as a Strong Non-Covalent Binding Motif for Self-Assembled Nanomaterials.
Topics: Adamantane; beta-Cyclodextrins; Calorimetry; gamma-Cyclodextrins; Magnetic Resonance Spectroscopy; Mannose; Nanodiamonds; Nanostructures; Optical Rotation; Thermodynamics | 2017 |
Single-Chain Glycopolymer Folding via Host-Guest Interactions and Its Unprecedented Effect on DC-SIGN Binding.
Topics: Adamantane; beta-Cyclodextrins; Carbohydrate Conformation; Cell Adhesion Molecules; Lectins, C-Type; Mannose; Protein Binding; Receptors, Cell Surface | 2018 |
Multi-functional nanocomplex codelivery of Trp2 and R837 to activate melanoma-specific immunity.
Topics: Adjuvants, Immunologic; Alginates; Animals; beta-Cyclodextrins; Cancer Vaccines; Cell Line, Tumor; Cytokines; Dendritic Cells; Drug Carriers; Drug Compounding; Female; Hydrophobic and Hydrophilic Interactions; Imiquimod; Lectins, C-Type; Mannose; Mannose Receptor; Mannose-Binding Lectins; Melanoma, Experimental; Membrane Proteins; Mice, Inbred C57BL; Nanoparticles; Peptide Fragments; Receptors, Cell Surface; Solubility; T-Lymphocytes, Helper-Inducer | 2020 |
Mannose-methyl-β-cyclodextrin suppresses tumor growth by targeting both colon cancer cells and tumor-associated macrophages.
Topics: Animals; beta-Cyclodextrins; Colonic Neoplasms; Mannose; Mice; Phosphatidylinositol 3-Kinases; Tumor-Associated Macrophages | 2023 |