Page last updated: 2024-08-17

mannitol and levodopa

mannitol has been researched along with levodopa in 12 studies

Research

Studies (12)

TimeframeStudies, this research(%)All Research%
pre-19901 (8.33)18.7374
1990's1 (8.33)18.2507
2000's4 (33.33)29.6817
2010's6 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Baert, B; Beetens, J; Bodé, S; De Spiegeleer, B; Deconinck, E; Lambert, J; Slegers, G; Slodicka, M; Stoppie, P; Van Gele, M; Vander Heyden, Y1
Ahlin, G; Artursson, P; Bergström, CA; Gustavsson, L; Karlsson, J; Larsson, R; Matsson, P; Norinder, U; Pedersen, JM1
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Campillo, NE; Guerra, A; Páez, JA1
García-Mera, X; González-Díaz, H; Prado-Prado, FJ1
Annand, R; Gozalbes, R; Jacewicz, M; Pineda-Lucena, A; Tsaioun, K1
Barber, S; Dew, TP; Farrell, TL; Poquet, L; Williamson, G1
Barbour, P; Fahn, S; Prockop, L1
Farhan Asad, S; Hadi, SM; Singh, S1
Dryhurst, G; Foster, SB; Han, J; Wrona, MZ1
Alapi, T; Ambrus, R; Bartos, C; Katona, G; Kiss, T; Szabó-Révész, P; Varga, G1

Other Studies

12 other study(ies) available for mannitol and levodopa

ArticleYear
Transdermal penetration behaviour of drugs: CART-clustering, QSPR and selection of model compounds.
    Bioorganic & medicinal chemistry, 2007, Nov-15, Volume: 15, Issue:22

    Topics: Anti-Inflammatory Agents; Cell Membrane Permeability; Cluster Analysis; Drug Evaluation, Preclinical; Humans; Models, Biological; Predictive Value of Tests; Quantitative Structure-Activity Relationship; Regression Analysis; Skin; Skin Absorption

2007
Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
    Journal of medicinal chemistry, 2008, Oct-09, Volume: 51, Issue:19

    Topics: Cell Line; Computer Simulation; Drug Design; Gene Expression Profiling; Humans; Hydrogen Bonding; Liver; Molecular Weight; Organic Cation Transporter 1; Pharmaceutical Preparations; Predictive Value of Tests; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship

2008
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
    Journal of medicinal chemistry, 2008, Nov-13, Volume: 51, Issue:21

    Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship

2008
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Neural computational prediction of oral drug absorption based on CODES 2D descriptors.
    European journal of medicinal chemistry, 2010, Volume: 45, Issue:3

    Topics: Administration, Oral; Humans; Models, Chemical; Neural Networks, Computer; Permeability; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical

2010
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
    Bioorganic & medicinal chemistry, 2010, Mar-15, Volume: 18, Issue:6

    Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics

2010
QSAR-based permeability model for drug-like compounds.
    Bioorganic & medicinal chemistry, 2011, Apr-15, Volume: 19, Issue:8

    Topics: Caco-2 Cells; Cell Membrane Permeability; Drug Discovery; Humans; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship

2011
Predicting phenolic acid absorption in Caco-2 cells: a theoretical permeability model and mechanistic study.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:2

    Topics: Artificial Intelligence; Caco-2 Cells; Cell Membrane Permeability; Cinnamates; Enterocytes; Humans; Hydrophobic and Hydrophilic Interactions; Intestinal Absorption; Kinetics; Models, Biological; Molecular Conformation; Osmolar Concentration; Phenols

2012
Homovanillic acid: entry rate kinetics for transfer from plasma to cerebrospinal fluid.
    Brain research, 1974, Nov-22, Volume: 80, Issue:3

    Topics: Animals; Biological Transport; Blood-Brain Barrier; Carbon Radioisotopes; Dogs; Homovanillic Acid; Injections, Intravenous; Kinetics; Levodopa; Mannitol; Phenylacetates

1974
Uric acid inhibits L-DOPA-CU(II) mediated DNA cleavage.
    Neuroscience letters, 1998, Dec-18, Volume: 258, Issue:2

    Topics: Animals; Cattle; Chromosome Breakage; Copper; DNA; DNA Damage; DNA, Superhelical; Dose-Response Relationship, Drug; Hydroxyl Radical; Levodopa; Mannitol; Oxidation-Reduction; Plasmids; Thiourea; Uric Acid; Xanthine

1998
The parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) mediates release of l-3,4-dihydroxyphenylalanine (l-DOPA) and inhibition of l-DOPA decarboxylase in the rat striatum: a microdialysis study.
    Chemical research in toxicology, 2003, Volume: 16, Issue:10

    Topics: 1-Methyl-4-phenylpyridinium; Animals; Antioxidants; Aromatic Amino Acid Decarboxylase Inhibitors; Body Temperature; Chromatography, High Pressure Liquid; Dopa Decarboxylase; Hydroxyindoleacetic Acid; Levodopa; Male; Mannitol; Microdialysis; Neostriatum; Parkinsonian Disorders; Perfusion; Rats; Rats, Sprague-Dawley; Salicylates; Serotonin; Time Factors

2003
Interaction Studies Between Levodopa and Different Excipients to Develop Coground Binary Mixtures for Intranasal Application.
    Journal of pharmaceutical sciences, 2019, Volume: 108, Issue:8

    Topics: Administration, Intranasal; alpha-Cyclodextrins; Antiparkinson Agents; Crystallization; Drug Compounding; Drug Liberation; Excipients; Hypromellose Derivatives; Levodopa; Mannitol; Povidone; Solubility

2019