mannitol has been researched along with levodopa in 12 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (8.33) | 18.7374 |
1990's | 1 (8.33) | 18.2507 |
2000's | 4 (33.33) | 29.6817 |
2010's | 6 (50.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Baert, B; Beetens, J; Bodé, S; De Spiegeleer, B; Deconinck, E; Lambert, J; Slegers, G; Slodicka, M; Stoppie, P; Van Gele, M; Vander Heyden, Y | 1 |
Ahlin, G; Artursson, P; Bergström, CA; Gustavsson, L; Karlsson, J; Larsson, R; Matsson, P; Norinder, U; Pedersen, JM | 1 |
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Campillo, NE; Guerra, A; Páez, JA | 1 |
García-Mera, X; González-Díaz, H; Prado-Prado, FJ | 1 |
Annand, R; Gozalbes, R; Jacewicz, M; Pineda-Lucena, A; Tsaioun, K | 1 |
Barber, S; Dew, TP; Farrell, TL; Poquet, L; Williamson, G | 1 |
Barbour, P; Fahn, S; Prockop, L | 1 |
Farhan Asad, S; Hadi, SM; Singh, S | 1 |
Dryhurst, G; Foster, SB; Han, J; Wrona, MZ | 1 |
Alapi, T; Ambrus, R; Bartos, C; Katona, G; Kiss, T; Szabó-Révész, P; Varga, G | 1 |
12 other study(ies) available for mannitol and levodopa
Article | Year |
---|---|
Transdermal penetration behaviour of drugs: CART-clustering, QSPR and selection of model compounds.
Topics: Anti-Inflammatory Agents; Cell Membrane Permeability; Cluster Analysis; Drug Evaluation, Preclinical; Humans; Models, Biological; Predictive Value of Tests; Quantitative Structure-Activity Relationship; Regression Analysis; Skin; Skin Absorption | 2007 |
Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
Topics: Cell Line; Computer Simulation; Drug Design; Gene Expression Profiling; Humans; Hydrogen Bonding; Liver; Molecular Weight; Organic Cation Transporter 1; Pharmaceutical Preparations; Predictive Value of Tests; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship | 2008 |
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship | 2008 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Neural computational prediction of oral drug absorption based on CODES 2D descriptors.
Topics: Administration, Oral; Humans; Models, Chemical; Neural Networks, Computer; Permeability; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical | 2010 |
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics | 2010 |
QSAR-based permeability model for drug-like compounds.
Topics: Caco-2 Cells; Cell Membrane Permeability; Drug Discovery; Humans; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship | 2011 |
Predicting phenolic acid absorption in Caco-2 cells: a theoretical permeability model and mechanistic study.
Topics: Artificial Intelligence; Caco-2 Cells; Cell Membrane Permeability; Cinnamates; Enterocytes; Humans; Hydrophobic and Hydrophilic Interactions; Intestinal Absorption; Kinetics; Models, Biological; Molecular Conformation; Osmolar Concentration; Phenols | 2012 |
Homovanillic acid: entry rate kinetics for transfer from plasma to cerebrospinal fluid.
Topics: Animals; Biological Transport; Blood-Brain Barrier; Carbon Radioisotopes; Dogs; Homovanillic Acid; Injections, Intravenous; Kinetics; Levodopa; Mannitol; Phenylacetates | 1974 |
Uric acid inhibits L-DOPA-CU(II) mediated DNA cleavage.
Topics: Animals; Cattle; Chromosome Breakage; Copper; DNA; DNA Damage; DNA, Superhelical; Dose-Response Relationship, Drug; Hydroxyl Radical; Levodopa; Mannitol; Oxidation-Reduction; Plasmids; Thiourea; Uric Acid; Xanthine | 1998 |
The parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) mediates release of l-3,4-dihydroxyphenylalanine (l-DOPA) and inhibition of l-DOPA decarboxylase in the rat striatum: a microdialysis study.
Topics: 1-Methyl-4-phenylpyridinium; Animals; Antioxidants; Aromatic Amino Acid Decarboxylase Inhibitors; Body Temperature; Chromatography, High Pressure Liquid; Dopa Decarboxylase; Hydroxyindoleacetic Acid; Levodopa; Male; Mannitol; Microdialysis; Neostriatum; Parkinsonian Disorders; Perfusion; Rats; Rats, Sprague-Dawley; Salicylates; Serotonin; Time Factors | 2003 |
Interaction Studies Between Levodopa and Different Excipients to Develop Coground Binary Mixtures for Intranasal Application.
Topics: Administration, Intranasal; alpha-Cyclodextrins; Antiparkinson Agents; Crystallization; Drug Compounding; Drug Liberation; Excipients; Hypromellose Derivatives; Levodopa; Mannitol; Povidone; Solubility | 2019 |