manganese-gtp has been researched along with 2-2--(hydroxynitrosohydrazono)bis-ethanamine* in 1 studies
1 other study(ies) available for manganese-gtp and 2-2--(hydroxynitrosohydrazono)bis-ethanamine
Article | Year |
---|---|
Selective guanylyl cyclase inhibitor reverses nitric oxide-induced vasorelaxation.
Effects of a novel soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), were characterized on guanylyl cyclase activity in cytosolic fraction of COS-7 cells overexpressing the alpha 1 and beta 1 subunits of the rat soluble enzyme. ODQ was a noncompetitive inhibitor of soluble guanylyl cyclase with respect to Mn2+ or Mn(2+)-GTP and was a mixed competitive/noncompetitive inhibitor with respect to nitric oxide (NO) donation. ODQ (10 mumol/L) reduced deta nonoate-stimulated cGMP production in COS-7 cells overexpressing soluble guanylyl cyclase and in rat aortic vascular smooth muscle cells. ODQ did not inhibit particulate forms of the enzyme rat guanylyl cyclase-A, -B, or -C, did not block NO synthase, and did not auto-oxidize deta nonoate-donated NO in the presence of cells at physiological pH. Therefore, ODQ is a selective inhibitor of soluble guanylyl cyclase. Using ODQ in isolated aortic ring preparations, we tested the hypothesis that soluble guanylyl cyclase mediates vasorelaxant activity associated with NO. Phenylephrine (100 nmol/L)-precontracted, isolated rat aortas were relaxed in a concentration-dependent manner by deta nonoate (0.01 to 100 mumol/L) and nitroglycerin (0.01 to 300 mumol/L). ODQ (10 mumol/L) attenuated deta nonoate- and nitroglycerin-mediated relaxation of contracted aortas. ODQ had no effect on natriuretic peptide-, 8-bromo-cGMP-, isoproterenol-, or bimakalim-mediated aortic relaxation. These results support the hypothesis that soluble guanylyl cyclase mediates vasorelaxant activity associated with nitric oxide. Topics: Animals; Aorta; COS Cells; Cyclic GMP; Guanosine Triphosphate; Male; Muscle Relaxation; Muscle, Smooth, Vascular; Nitric Oxide; Nitroglycerin; Nitroso Compounds; Oxadiazoles; Oxidation-Reduction; Phenylephrine; Quinoxalines; Rats; Rats, Sprague-Dawley; Xanthine; Xanthine Oxidase; Xanthines | 1997 |