maneb has been researched along with pimagedine* in 2 studies
2 other study(ies) available for maneb and pimagedine
Article | Year |
---|---|
Involvement of nitric oxide in maneb- and paraquat-induced Parkinson's disease phenotype in mouse: is there any link with lipid peroxidation?
The study aimed to investigate the involvement of nitric oxide (NO) in maneb (MB)- and paraquat (PQ)-induced Parkinson's disease (PD) phenotype in mouse and its subsequent contribution to lipid peroxidation. Animals were treated intraperitoneally with or without MB and PQ, twice a week for 3, 6 and 9 weeks. In some sets of experiments (9 weeks treated groups), the animals were treated intraperitoneally with or without inducible nitric oxide synthase (iNOS) inhibitor-aminoguanidine, tyrosine kinase inhibitor-genistein, nuclear factor-kappa B (NF-kB) inhibitor-pyrrolidine dithiocarbamate (PDTC) or p38 mitogen activated protein kinase (MAPK) inhibitor-SB202190. Nitrite content and lipid peroxidation were measured in all treated groups along with respective controls. RNA was isolated from the striatum of control and treated mice and reverse transcribed into cDNA. RT-PCR was performed to amplify iNOS mRNA and western blot analysis was done to check its protein level. MB- and PQ-treatment induced nitrite content, expressions of iNOS mRNA and protein and lipid peroxidation as compared with respective controls. Aminoguanidine resulted in a significant attenuation of iNOS mRNA expression, nitrite content and lipid peroxidation demonstrating the involvement of nitric oxide in MB- and PQ-induced lipid peroxidation. Genistein, SB202190 and PDTC reduced the expression of iNOS mRNA, nitrite content and lipid peroxidation in MB- and PQ-treated mouse striatum. The results obtained demonstrate that nitric oxide contributes to an increase of MB- and PQ-induced lipid peroxidation in mouse striatum and tyrosine kinase, p38 MAPK and NF-kB regulate iNOS expression. Topics: Animals; Corpus Striatum; Guanidines; Lipid Peroxidation; Male; Maneb; Mice; Nitric Oxide; Nitric Oxide Synthase Type II; Nitrites; Paraquat; Parkinson Disease, Secondary; Pesticides; Phenotype; RNA, Messenger; Second Messenger Systems; Tyrosine 3-Monooxygenase | 2010 |
The involvement of nitric oxide in maneb- and paraquat-induced oxidative stress in rat polymorphonuclear leukocytes.
Oxidative stress plays a crucial role in the manifestations of maneb (MB) and paraquat (PQ)-induced toxicity including MB+PQ-induced Parkinson's disease (PD). Polymorphonuclear leukocytes (PMNs) actively participate in the oxidative stress-mediated inflammation and organ toxicity. The present study was undertaken to investigate the MB- and/or PQ-induced alterations in the indices of oxidative stress in rat PMNs. Animals were treated with or without MB and/or PQ in an exposure time dependent manner. In some sets of experiments, the animals were pre-treated with NOS inhibitors N(G)-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine (AG) along with respective controls. A significant increase in myeloperoxidase (MPO), superoxide dismutase (SOD), nitric oxide, iNOS expression and lipid peroxidation (LPO) was observed in PMNs of MB- and/or PQ-treated animals, while catalase and glutathione S-transferase (GST) activities were attenuated. L-NAME and AG significantly reduced the augmented nitrite content, iNOS expression and MPO activity to control level in MB and PQ exposed animals. Although the augmented LPO was also reduced significantly in L-NAME and AG treated rat PMNs, the level was still higher as compared with controls. Alterations induced in SOD and GST activities were not affected by NOS inhibitors. The results thus suggest that MB and/or PQ induce iNOS-mediated nitric oxide production, which in turn increases MPO activity and lipid peroxidation, thereby oxidative stress. Topics: Animals; Catalase; Enzyme Inhibitors; Glutathione Transferase; Guanidines; Lipid Peroxidation; Male; Maneb; Neutrophils; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase Type II; Oxidative Stress; Paraquat; Peroxidase; Pesticides; Rats; Rats, Wistar; Superoxide Dismutase; Time Factors | 2008 |