malonyl-coenzyme-a and naringenin

malonyl-coenzyme-a has been researched along with naringenin* in 14 studies

Other Studies

14 other study(ies) available for malonyl-coenzyme-a and naringenin

ArticleYear
Fine-tuning of p-coumaric acid synthesis to increase (2S)-naringenin production in yeast.
    Metabolic engineering, 2023, Volume: 79

    (2S)-Naringenin is a key precursor for biosynthesis of various high-value flavonoids and possesses a variety of nutritional and pharmaceutical properties on human health. Systematic optimization approaches have been employed to improve (2S)-naringenin production in different microbial hosts. However, very few studies have focused on the spatiotemporal distribution of (2S)-naringenin and the related pathway intermediate p-coumaric acid, which is an important factor for efficient production. Here, we first optimized the (2S)-naringenin biosynthetic pathway by alleviating the bottleneck downstream of p-coumaric acid and increasing malonyl-CoA supply, which improved (2S)-naringenin production but significant accumulation of p-coumaric acid still existed extracellularly. We thus established a dual dynamic control system through combining a malonyl-CoA biosensor regulator and an RNAi strategy, to autonomously control the synthesis of p-coumaric acid with the supply of malonyl-CoA. Furthermore, screening potential transporters led to identification of Pdr12 for improved (2S)-naringenin production and reduced accumulation of p-coumaric acid. Finally, a titer of 2.05 g/L (2S)-naringenin with negligible accumulation of p-coumaric acid was achieved in a fed batch fermentation. Our work highlights the importance of systematic control of pathway intermediates for efficient microbial production of plant natural products.

    Topics: Coumaric Acids; Flavanones; Humans; Malonyl Coenzyme A; Saccharomyces cerevisiae

2023
A
    ACS synthetic biology, 2022, 10-21, Volume: 11, Issue:10

    Topics: Biosensing Techniques; Flavanones; Malonyl Coenzyme A; Saccharomyces cerevisiae

2022
A fungal NRPS-PKS enzyme catalyses the formation of the flavonoid naringenin.
    Nature communications, 2022, 10-26, Volume: 13, Issue:1

    Biosynthesis of the flavonoid naringenin in plants and bacteria is commonly catalysed by a type III polyketide synthase (PKS) using one p-coumaroyl-CoA and three malonyl-CoA molecules as substrates. Here, we report a fungal non-ribosomal peptide synthetase -polyketide synthase (NRPS-PKS) hybrid FnsA for the naringenin formation. Feeding experiments with isotope-labelled precursors demonstrate that FnsA accepts not only p-coumaric acid (p-CA), but also p-hydroxybenzoic acid (p-HBA) as starter units, with three or four malonyl-CoA molecules for elongation, respectively. In vitro assays and MS/MS analysis prove that both p-CA and p-HBA are firstly activated by the adenylation domain of FnsA. Phylogenetic analysis reveals that the PKS portion of FnsA shares high sequence homology with type I PKSs. Refactoring the biosynthetic pathway in yeast with the involvement of fnsA provides an alternative approach for the production of flavonoids such as isorhamnetin and acacetin.

    Topics: Catalysis; Flavonoids; Malonyl Coenzyme A; Peptide Synthases; Phylogeny; Polyketide Synthases; Tandem Mass Spectrometry

2022
Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli.
    Metabolic engineering, 2021, Volume: 67

    Metabolic heterogeneity and dynamic changes in metabolic fluxes are two inherent characteristics of microbial fermentation that limit the precise control of metabolisms, often leading to impaired cell growth and low productivity. Dynamic metabolic engineering addresses these challenges through the design of multi-layered and multi-genetic dynamic regulation network (DRN) that allow a single cell to autonomously adjust metabolic flux in response to its growth and metabolite accumulation conditions. Here, we developed a growth coupled NCOMB (Naringenin-Coumaric acid-Malonyl-CoA-Balanced) DRN with systematic optimization of (2S)-naringenin and p-coumaric acid-responsive regulation pathways for real-time control of intracellular supply of malonyl-CoA. In this scenario, the acyl carrier protein was used as a novel critical node for fine-tuning malonyl-CoA consumption instead of direct repression of fatty acid synthase commonly employed in previous studies. To do so, we first engineered a multi-layered DRN enabling single cells to concurrently regulate acpH, acpS, acpT, acs, and ACC in malonyl-CoA catabolic and anabolic pathways. Next, the NCOMB DRN was optimized to enhance the synergies between different dynamic regulation layers via a biosensor-based directed evolution strategy. Finally, a high producer obtained from NCOMB DRN approach yielded a 8.7-fold improvement in (2S)-naringenin production (523.7 ± 51.8 mg/L) with a concomitant 20% increase in cell growth compared to the base strain using static strain engineering approach, thus demonstrating the high efficiency of this system for improving pathway production.

    Topics: Escherichia coli; Flavanones; Malonyl Coenzyme A; Metabolic Engineering

2021
Rational Design of Flavonoid Production Routes Using Combinatorial and Precursor-Directed Biosynthesis.
    ACS synthetic biology, 2020, 07-17, Volume: 9, Issue:7

    Combinatorial biosynthesis has great potential for designing synthetic circuits and amplifying the production of new active compounds. Studies on multienzyme cascades are extremely useful for improving our knowledge on enzymatic catalysis. In particular, the elucidation of enzyme substrate promiscuity can be potentially used for bioretrosynthetic approaches, leading to the design of alternative and more convenient routes to produce relevant molecules. In this perspective, plant-derived polyketides are extremely adaptable to those synthetic biological applications. Here, we present a combination of an

    Topics: Acyltransferases; Arabidopsis; Arabidopsis Proteins; Chalcones; Escherichia coli; Flavanones; Genetic Vectors; Malonyl Coenzyme A; Plasmids; Polyketide Synthases; Polyketides; Substrate Specificity; Synthetic Biology

2020
Optimizing Oleaginous Yeast Cell Factories for Flavonoids and Hydroxylated Flavonoids Biosynthesis.
    ACS synthetic biology, 2019, 11-15, Volume: 8, Issue:11

    Topics: Acyltransferases; Bioreactors; Chorismic Acid; Flavanones; Gene Expression; Glucose; Hydrogen-Ion Concentration; Hydroxylation; Malonyl Coenzyme A; Metabolic Engineering; NADPH-Ferrihemoprotein Reductase; Quercetin; Sulfuric Acids; Synthetic Biology; Yarrowia

2019
Magnesium starvation improves production of malonyl-CoA-derived metabolites in Escherichia coli.
    Metabolic engineering, 2019, Volume: 52

    Starvation of essential nutrients, such as nitrogen, sulfur, magnesium, and phosphorus, leads cells into stationary phase and potentially enhances target metabolite production because cells do not consume carbon for the biomass synthesis. The overall metabolic behavior changes depend on the type of nutrient starvation in Escherichia coli. In the present study, we determined the optimum nutrient starvation type for producing malonyl-CoA-derived metabolites such as 3-hydroxypropionic acid (3HP) and naringenin in E. coli. For 3HP production, high production titer (2.3 or 2.0 mM) and high specific production rate (0.14 or 0.28 mmol gCDW

    Topics: Acetyl-CoA Carboxylase; Adenosine Triphosphate; Escherichia coli; Flavanones; Flavonoids; Lactic Acid; Magnesium; Malonyl Coenzyme A; Metabolic Engineering; Nitrogen; Phosphorus

2019
Modulation of the central carbon metabolism of Corynebacterium glutamicum improves malonyl-CoA availability and increases plant polyphenol synthesis.
    Biotechnology and bioengineering, 2019, Volume: 116, Issue:6

    In recent years microorganisms have been engineered towards synthesizing interesting plant polyphenols such as flavonoids and stilbenes from glucose. Currently, the low endogenous supply of malonyl-CoA, indispensable for plant polyphenol synthesis, impedes high product titers. Usually, limited malonyl-CoA availability during plant polyphenol production is avoided by supplementing fatty acid synthesis-inhibiting antibiotics such as cerulenin, which are known to increase the intracellular malonyl-CoA pool as a side effect. Motivated by the goal of microbial polyphenol synthesis being independent of such expensive additives, we used rational metabolic engineering approaches to modulate regulation of fatty acid synthesis and flux into the tricarboxylic acid cycle (TCA cycle) in Corynebacterium glutamicum strains capable of flavonoid and stilbene synthesis. Initial experiments showed that sole overexpression of genes coding for the native malonyl-CoA-forming acetyl-CoA carboxylase is not sufficient for increasing polyphenol production in C. glutamicum. Hence, the intracellular acetyl-CoA availability was also increased by reducing the flux into the TCA cycle through reduction of citrate synthase activity. In defined cultivation medium, the constructed C. glutamicum strains accumulated 24 mg·L

    Topics: Bioreactors; Citrate (si)-Synthase; Citric Acid Cycle; Corynebacterium glutamicum; Flavanones; Malonyl Coenzyme A; Metabolic Engineering; Phytochemicals; Polyphenols; Resveratrol

2019
Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli.
    Scientific reports, 2015, Sep-01, Volume: 5

    The limited supply of intracellular malonyl-CoA in Escherichia coli impedes the biological synthesis of polyketides, flavonoids and biofuels. Here, a clustered regularly interspaced short palindromic repeats (CRISPR) interference system was constructed for fine-tuning central metabolic pathways to efficiently channel carbon flux toward malonyl-CoA. Using synthetic sgRNA to silence candidate genes, genes that could increase the intracellular malonyl-CoA level by over 223% were used as target genes. The efficiencies of repression of these genes were tuned to achieve appropriate levels so that the intracellular malonyl-CoA level was enhanced without significantly altering final biomass accumulation (the final OD600 decreased by less than 10%). Based on the results, multiple gene repressing was successful in approaching the limit of the amount of malonyl-CoA needed to produce the plant-specific secondary metabolite (2S)-naringenin. By coupling the genetic modifications to cell growth, the combined effects of these genetic perturbations increased the final (2S)-naringenin titer to 421.6 mg/L, which was 7.4-fold higher than the control strain. The strategy described here could be used to characterize genes that are essential for cell growth and to develop E. coli as a well-organized cell factory for producing other important products that require malonyl-CoA as a precursor.

    Topics: Base Sequence; CRISPR-Cas Systems; Escherichia coli; Escherichia coli Proteins; Flavanones; Flavonoids; Malonyl Coenzyme A; Metabolic Networks and Pathways; Plasmids; Stereoisomerism

2015
Fine-Tuning of the Fatty Acid Pathway by Synthetic Antisense RNA for Enhanced (2S)-Naringenin Production from l-Tyrosine in Escherichia coli.
    Applied and environmental microbiology, 2014, Volume: 80, Issue:23

    Malonyl coenzyme A (malonyl-CoA) is an important precursor for the synthesis of natural products, such as polyketides and flavonoids. The majority of this cofactor often is consumed for producing fatty acids and phospholipids, leaving only a small amount of cellular malonyl-CoA available for producing the target compound. The tuning of malonyl-CoA into heterologous pathways yields significant phenotypic effects, such as growth retardation and even cell death. In this study, fine-tuning of the fatty acid pathway in Escherichia coli with antisense RNA (asRNA) to balance the demands on malonyl-CoA for target-product synthesis and cell health was proposed. To establish an efficient asRNA system, the relationship between sequence and function for asRNA was explored. It was demonstrated that the gene-silencing effect of asRNA could be tuned by directing asRNA to different positions in the 5'-UTR (untranslated region) of the target gene. Based on this principle, the activity of asRNA was quantitatively tailored to balance the need for malonyl-CoA in cell growth and the production of the main flavonoid precursor, (2S)-naringenin. Appropriate inhibitory efficiency of the anti-fabB/fabF asRNA improved the production titer by 431% (391 mg/liter). Therefore, the strategy presented in this study provided a useful tool for the fine-tuning of endogenous gene expression in bacteria.

    Topics: Cytosol; Escherichia coli; Flavanones; Gene Expression Regulation, Bacterial; Malonyl Coenzyme A; Metabolic Engineering; Phospholipids; RNA, Antisense; Tyrosine

2014
Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA.
    Metabolic engineering, 2011, Volume: 13, Issue:5

    Malonyl-coenzyme A is an important precursor metabolite for the biosynthesis of polyketides, flavonoids and biofuels. However, malonyl-CoA naturally synthesized in microorganisms is consumed for the production of fatty acids and phospholipids leaving only a small amount available for the production of other metabolic targets in recombinant biosynthesis. Here we present an integrated computational and experimental approach aimed at improving the intracellular availability of malonyl-CoA in Escherichia coli. We used a customized version of the recently developed OptForce methodology to predict a minimal set of genetic interventions that guarantee a prespecified yield of malonyl-CoA in E. coli strain BL21 Star™. In order to validate the model predictions, we have successfully constructed an E. coli recombinant strain that exhibits a 4-fold increase in the levels of intracellular malonyl-CoA compared to the wild type strain. Furthermore, we demonstrate the potential of this E. coli strain for the production of plant-specific secondary metabolites naringenin (474mg/L) with the highest yield ever achieved in a lab-scale fermentation process. Combined effect of the genetic interventions was found to be synergistic based on a developed analysis method that correlates genetic modification to cell phenotype, specifically the identified knockout targets (ΔfumC and ΔsucC) and overexpression targets (ACC, PGK, GAPD and PDH) can cooperatively force carbon flux towards malonyl-CoA. The presented strategy can also be readily expanded for the production of other malonyl-CoA-derived compounds like polyketides and biofuels.

    Topics: Carbon; Escherichia coli; Flavanones; Genome, Bacterial; Malonyl Coenzyme A; Models, Biological; Organisms, Genetically Modified

2011
Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster.
    Applied microbiology and biotechnology, 2005, Volume: 68, Issue:4

    For the fermentative production of plant-specific flavanones (naringenin, pinocembrin) by Escherichia coli, a plasmid was constructed which carried an artificial biosynthetic gene cluster, including PAL encoding a phenylalanine ammonia-lyase from a yeast, ScCCL encoding a cinnamate/coumarate:CoA ligase from the actinomycete Streptomyces coelicolor A3(2), CHS encoding a chalcone synthase from a licorice plant and CHI encoding a chalcone isomerase from the Pueraria plant. The recombinant E. coli cells produced (2S)-naringenin from tyrosine and (2S)-pinocembrin from phenylalanine. When the two subunit genes of acetyl-CoA carboxylase from Corynebacterium glutamicum were expressed under the control of the T7 promoter and the ribosome-binding sequence in the recombinant E. coli cells, the flavanone yields were greatly increased, probably because enhanced expression of acetyl-CoA carboxylase increased a pool of malonyl-CoA that was available for flavanone synthesis. Under cultural conditions where E. coli at a cell density of 50 g/l was incubated in the presence of 3 mM tyrosine or phenylalanine, the yields of naringenin and pinocembrin reached about 60 mg/l. The fermentative production of flavanones in E. coli is the first step in the construction of a library of flavonoid compounds and un-natural flavonoids in bacteria.

    Topics: Escherichia coli; Fermentation; Flavanones; Genes, Plant; Genes, Synthetic; Genetic Engineering; Malonyl Coenzyme A

2005
Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase.
    Biochemistry, 2000, Feb-08, Volume: 39, Issue:5

    Chalcone synthase (CHS) catalyzes formation of the phenylpropanoid chalcone from one p-coumaroyl-CoA and three malonyl-coenzyme A (CoA) thioesters. The three-dimensional structure of CHS [Ferrer, J.-L., Jez, J. M., Bowman, M. E., Dixon, R. A., and Noel, J. P. (1999) Nat. Struct. Biol. 6, 775-784] suggests that four residues (Cys164, Phe215, His303, and Asn336) participate in the multiple decarboxylation and condensation reactions catalyzed by this enzyme. Here, we functionally characterize 16 point mutants of these residues for chalcone production, malonyl-CoA decarboxylation, and the ability to bind CoA and acetyl-CoA. Our results confirm Cys164's role as the active-site nucleophile in polyketide formation and elucidate the importance of His303 and Asn336 in the malonyl-CoA decarboxylation reaction. We suggest that Phe215 may help orient substrates at the active site during elongation of the polyketide intermediate. To better understand the structure-function relationships in some of these mutants, we also determined the crystal structures of the CHS C164A, H303Q, and N336A mutants refined to 1.69, 2.0, and 2.15 A resolution, respectively. The structure of the C164A mutant reveals that the proposed oxyanion hole formed by His303 and Asn336 remains undisturbed, allowing this mutant to catalyze malonyl-CoA decarboxylation without chalcone formation. The structures of the H303Q and N336A mutants support the importance of His303 and Asn336 in polarizing the thioester carbonyl of malonyl-CoA during the decarboxylation reaction. In addition, both of these residues may also participate in stabilizing the tetrahedral transition state during polyketide elongation. Conservation of the catalytic functions of the active-site residues may occur across a wide variety of condensing enzymes, including other polyketide and fatty acid synthases.

    Topics: Acetyl Coenzyme A; Acyltransferases; Amino Acid Sequence; Amino Acid Substitution; Base Sequence; Coenzyme A; Crystallography, X-Ray; Decarboxylation; Enzyme Activation; Flavanones; Flavonoids; Malonyl Coenzyme A; Medicago sativa; Molecular Sequence Data; Multienzyme Complexes; Mutagenesis, Site-Directed; Plant Proteins; Recombinant Proteins; Spectrometry, Fluorescence; Structure-Activity Relationship; Titrimetry

2000
Evidence for catalytic cysteine-histidine dyad in chalcone synthase.
    Biochemical and biophysical research communications, 2000, Sep-07, Volume: 275, Issue:3

    Chalcone and stilbene synthases (CHS and STS) catalyze condensation reactions of p-coumaroyl-CoA and three C(2)-units from malonyl-CoA, but catalyze different cyclization reactions to produce naringenin chalcone and resveratrol, respectively. Condensing activities of wild-type CHS and STS as well as STS-C60S mutant were inhibited by iodoacetamide (Idm) and diethyl pyrophosphate (DPC). DPC also inhibited malonyl-CoA decarboxylation activity of wild-type and C164S mutants of CHS and STS. Meanwhile, Idm treatment enhanced (two- to fourfold) malonyl decarboxylase activity of wild-type enzymes and STS-C60S, whereas this priming effect was not observed with C164S mutants of CHS and STS, indicating that the cysteine residue being modified by Idm is the catalytic Cys164 of CHS and STS. DPC inhibition of decarboxylation activity of wild-type CHS was pH-independent in the range of pH 5.8 to 7.8; however, its inhibitory effect on CHS-C164S increased as pH increased from 6.2 to 7.4 with a midpoint of 6.4. Based on the 3-D structure of CHS and the observed shift in microscopic pK(a), it was concluded that the histidine residue being modified by DPC in CHS is likely the catalytic His303 and that His303 forms an ionic pair (catalytic dyad) with Cys164 in wild-type CHS. In addition, our results showed that Cys60 in STS is not essential for the activity and only a single cysteine (Cys164) participates in the catalysis as in CHS.

    Topics: Acyltransferases; Amino Acid Substitution; Binding Sites; Catalysis; Cysteine; Diethyl Pyrocarbonate; Enzyme Inhibitors; Escherichia coli; Flavanones; Flavonoids; Histidine; Hydrogen-Ion Concentration; Iodoacetamide; Malonyl Coenzyme A; Mutagenesis, Site-Directed; Plants; Recombinant Fusion Proteins; Resveratrol; Stilbenes

2000