Page last updated: 2024-08-21

malondialdehyde and monocrotaline

malondialdehyde has been researched along with monocrotaline in 10 studies

Research

Studies (10)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (10.00)29.6817
2010's7 (70.00)24.3611
2020's2 (20.00)2.80

Authors

AuthorsStudies
Li, ZC; Mei, QB; Song, JC; Zhang, FQ; Zhao, DH1
Han, JJ; Jing, L; Qin, SC; Sun, XJ; Wang, Y; Wu, YP; Xia, ZL; Zhao, XM1
Comunoglu, C; Macit, A; Silan, C; Uzun, O; Yavuz, O; Yavuz, T; Yildirim, HA; Yuksel, H1
Chen, S; Dong, K; Li, Z; Liu, M; Wang, Y; Zhang, B; Zheng, L; Zheng, W1
Li, S; Li, XW; Wang, XM; Yang, JR1
Chen, C; Dong, W; Lin, X; Lv, S; Tong, G; Wang, X; Yang, D; Yang, Y1
Han, X; Long, Y; Zhang, X; Zhang, Y; Zhou, Z1
Jia, Z; Liu, S; Ma, T; Wang, A; Xu, T; Zhang, Z1
An, N; Feng, W; Feng, Z; Guan, H; Hu, T; Hu, Y; Liu, J; Mao, Y; Mou, J; Zhang, D1
Chen, S; Cui, H; Du, GQ; Li, Y; Shen, W; Sun, P; Wang, C; Xue, JY; Zhao, P1

Other Studies

10 other study(ies) available for malondialdehyde and monocrotaline

ArticleYear
Therapeutic effects of DCDDP, a calcium channel blocker, on chronic pulmonary hypertension in rat.
    Journal of applied physiology (Bethesda, Md. : 1985), 2002, Volume: 92, Issue:3

    Topics: Animals; Calcium; Calcium Channel Blockers; Cell Division; Cells, Cultured; Chronic Disease; Dicarboxylic Acids; Dihydropyridines; Endothelins; Hemodynamics; Hypertension, Pulmonary; Male; Malondialdehyde; Monocrotaline; Muscle, Smooth, Vascular; Nitrendipine; Nitric Oxide; Pulmonary Artery; Pulmonary Circulation; Rats; Rats, Sprague-Dawley; Serotonin; Superoxide Dismutase; Vasoconstriction

2002
Protective effects of hydrogen-rich saline on monocrotaline-induced pulmonary hypertension in a rat model.
    Respiratory research, 2011, Mar-04, Volume: 12

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Anti-Inflammatory Agents; Antihypertensive Agents; Antioxidants; Biomarkers; Blood Pressure; Deoxyguanosine; Enzyme-Linked Immunosorbent Assay; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Inflammation Mediators; Interleukin-6; Male; Malondialdehyde; Monocrotaline; Rats; Rats, Sprague-Dawley; Sodium Chloride; Superoxide Dismutase; Time Factors; Tumor Necrosis Factor-alpha

2011
Pyrrolidine dithiocarbamate attenuates the development of monocrotaline-induced pulmonary arterial hypertension.
    Pathology, research and practice, 2013, Volume: 209, Issue:5

    Topics: Animals; Antioxidants; Disease Models, Animal; Endothelium, Vascular; Erythrocytes; Familial Primary Pulmonary Hypertension; Hematocrit; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Malondialdehyde; Monocrotaline; Pyrrolidines; Rats; Rats, Sprague-Dawley; Thiocarbamates

2013
Fasudil reversed MCT-induced and chronic hypoxia-induced pulmonary hypertension by attenuating oxidative stress and inhibiting the expression of Trx1 and HIF-1α.
    Respiratory physiology & neurobiology, 2014, Sep-15, Volume: 201

    Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Analysis of Variance; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Gene Expression Regulation; Hemodynamics; Hydrogen Peroxide; Hypertension, Pulmonary; Hypoxia; Hypoxia-Inducible Factor 1, alpha Subunit; Male; Malondialdehyde; Monocrotaline; Oxidative Stress; Rats; Rats, Sprague-Dawley; Superoxide Dismutase; Thioredoxins; Vasodilator Agents

2014
[Effects of rutaecarpine on right ventriclar remodeling in rats with monocrotaline-induced pulmonary hypertension].
    Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology, 2014, Volume: 30, Issue:5

    Topics: Animals; Antioxidants; Heart Ventricles; Hypertension, Pulmonary; Indole Alkaloids; Male; Malondialdehyde; Monocrotaline; NADPH Oxidase 4; NADPH Oxidases; Quinazolines; Rats; Ventricular Remodeling

2014
Tetrandrine prevents monocrotaline-induced pulmonary arterial hypertension in rats through regulation of the protein expression of inducible nitric oxide synthase and cyclic guanosine monophosphate-dependent protein kinase type 1.
    Journal of vascular surgery, 2016, Volume: 64, Issue:5

    Topics: Animals; Anti-Inflammatory Agents; Antihypertensive Agents; Antioxidants; Arterial Pressure; Benzylisoquinolines; Catalase; Cell Proliferation; Cyclic GMP-Dependent Protein Kinase Type I; Disease Models, Animal; Glutathione; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Malondialdehyde; Monocrotaline; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Nitric Oxide Synthase Type II; Oxidative Stress; Pulmonary Artery; Rats, Sprague-Dawley; Signal Transduction; Superoxide Dismutase; Time Factors; Vascular Remodeling; Ventricular Remodeling

2016
Hydroxysafflor yellow A improves established monocrotaline-induced pulmonary arterial hypertension in rats.
    The Journal of international medical research, 2016, Volume: 44, Issue:3

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Chalcone; Deoxyguanosine; Gene Expression Regulation; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Inflammation; Male; Malondialdehyde; Monocrotaline; Oxidative Stress; Quinones; Rats, Wistar; RNA, Messenger; Superoxide Dismutase; Vascular Remodeling

2016
Aldehyde dehydrogenase 2 protects against oxidative stress associated with pulmonary arterial hypertension.
    Redox biology, 2017, Volume: 11

    Topics: Aldehyde Dehydrogenase, Mitochondrial; Aldehydes; Animals; Antihypertensive Agents; Benzamides; Benzodioxoles; Cell Line; Cell Movement; Cell Proliferation; Cyclin D1; Gene Expression Regulation; Hypertension, Pulmonary; Male; Malondialdehyde; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Monocrotaline; Myocytes, Smooth Muscle; NF-kappa B; Oxidative Stress; Proto-Oncogene Proteins c-myc; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Signal Transduction

2017
Alginate Oligosaccharide Alleviates Monocrotaline-Induced Pulmonary Hypertension via Anti-Oxidant and Anti-Inflammation Pathways in Rats.
    International heart journal, 2020, Jan-31, Volume: 61, Issue:1

    Topics: Alginates; Animals; Anti-Inflammatory Agents; Antioxidants; Disease Models, Animal; Dose-Response Relationship, Drug; Hypertrophy, Right Ventricular; Injections, Intraperitoneal; Male; Malondialdehyde; Monocrotaline; Pulmonary Arterial Hypertension; Random Allocation; Rats; Vascular Remodeling

2020
Melatonin activates the Mst1-Nrf2 signaling to alleviate cardiac hypertrophy in pulmonary arterial hypertension.
    European journal of pharmacology, 2022, Oct-15, Volume: 933

    Topics: Animals; Antioxidants; Arginine Vasopressin; Cysteine; Disease Models, Animal; Familial Primary Pulmonary Hypertension; Hepatocyte Growth Factor; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Malondialdehyde; Melatonin; Monocrotaline; NF-E2-Related Factor 2; Proto-Oncogene Proteins; Pulmonary Arterial Hypertension; Rats; RNA, Small Interfering; Ventricular Remodeling

2022