malondialdehyde has been researched along with jasmonic acid in 19 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (21.05) | 29.6817 |
2010's | 11 (57.89) | 24.3611 |
2020's | 4 (21.05) | 2.80 |
Authors | Studies |
---|---|
DellaPenna, D; Farmer, EE; Krischke, M; Mène-Saffrané, L; Mueller, MJ; Sattler, SE | 1 |
Chételat, A; Dubugnon, L; Farmer, EE; Gouhier-Darimont, C; Mène-Saffrané, L; Stolz, S | 1 |
Alonso-Ramírez, A; Gómez-Cadenas, A; Jiménez, JA; López-Climent, M; Nicolás, C; Nicolás, G; Reyes, D; Rodríguez, D | 1 |
Huang, WD; Liu, HT; Pan, QH; Tang, K; Yang, HR | 1 |
Ignacimuthu, S; Paulraj, MG; War, AR; War, MY | 1 |
Arrom, L; Asensi-Fabado, MA; Cela, J; Chang, C; Müller, M; Munné-Bosch, S | 1 |
Tam, NF; Yan, Z | 1 |
Guo, J; Qiu, Z; Zhang, L; Zhang, M; Zhu, A | 1 |
Ignacimuthu, S; Paulraj, MG; Sharma, HC; War, AR | 1 |
Chen, J; Li, X; Tam, NF; Yan, Z | 1 |
Doganlar, ZB; Kaya, A | 1 |
Du, K; Fu, S; Hu, L; Lei, S; Li, L; Li, Q; Pang, X; Wang, Z; Wei, M; Xu, L | 1 |
Ahmad, P; Alyemeni, MN; Bali, S; Bhardwaj, R; Kaur, P; Ohri, P; Sharma, A; Wijaya, L | 1 |
de la Osa, C; Fukami, J; Hungria, M; Megías, M; Nogueira, MA; Ollero, FJ; Valderrama-Fernández, R | 1 |
Farhangi-Abriz, S; Ghassemi-Golezani, K | 1 |
Dai, H; Jia, G; Krzyżak, J; Pogrzeba, M; Rusinowski, S; Wei, S | 1 |
Fallah, H; Mousavi, SR; Niknejad, Y; Tari, DB | 1 |
Chen, GD; Fu, YF; Lan, T; Tang, XY; Wang, CQ; Yang, XY; Yuan, S; Zeng, J; Zhang, ZW; Zheng, XJ | 1 |
Cao, S; Li, M; Liao, J; Lv, T; Qi, H; Xing, Q | 1 |
19 other study(ies) available for malondialdehyde and jasmonic acid
Article | Year |
---|---|
Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants.
Topics: Arabidopsis; Arabidopsis Proteins; Biomarkers; Cyclopentanes; Fatty Acids, Unsaturated; Gene Expression Profiling; Gene Expression Regulation, Plant; Germination; Immunity, Innate; Indoles; Lipid Peroxidation; Malondialdehyde; Mutation; Oxylipins; Plant Diseases; RNA, Messenger; Seedlings; Thiazoles; Tocopherols; Up-Regulation | 2006 |
Nonenzymatic oxidation of trienoic fatty acids contributes to reactive oxygen species management in Arabidopsis.
Topics: alpha-Linolenic Acid; Apoptosis Regulatory Proteins; Arabidopsis; Arabidopsis Proteins; Ascomycota; Cyclopentanes; Fatty Acid Desaturases; Hydrogen Peroxide; Intramolecular Oxidoreductases; Malondialdehyde; Mutation; Oxidation-Reduction; Oxidoreductases; Oxylipins; Plant Diseases; Reactive Oxygen Species; Salicylic Acid | 2009 |
Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds.
Topics: Abscisic Acid; Arabidopsis; Cyclopentanes; Fagus; Gibberellins; Heat-Shock Response; Malondialdehyde; Molecular Sequence Data; Oxidative Stress; Oxylipins; Plant Growth Regulators; Plant Proteins; Plants, Genetically Modified; Salicylic Acid; Seeds; Sodium Chloride; Stress, Physiological; Triazoles | 2009 |
Jasmonic acid is induced in a biphasic manner in response of pea seedlings to wounding.
Topics: Blotting, Western; Cyclopentanes; Lipoxygenase; Malondialdehyde; Masoprocol; Oxylipins; Pisum sativum; Plant Diseases; Seedlings; Time Factors | 2009 |
Herbivore- and elicitor-induced resistance in groundnut to Asian armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae).
Topics: Animals; Arachis; Catechol Oxidase; Cyclopentanes; Genotype; Herbivory; Hydrogen Peroxide; Malondialdehyde; Oxylipins; Peroxidase; Phenols; Plant Proteins; Spodoptera | 2011 |
Enhanced oxidative stress in the ethylene-insensitive (ein3-1) mutant of Arabidopsis thaliana exposed to salt stress.
Topics: Antioxidants; Arabidopsis; Arabidopsis Proteins; Biomass; Chlorophyll; Cyclopentanes; DNA-Binding Proteins; Ethylenes; Gene Expression Regulation, Plant; Indoleacetic Acids; Lipid Peroxidation; Malondialdehyde; Mutation; Nuclear Proteins; Oxidative Stress; Oxylipins; Plant Growth Regulators; Plant Leaves; Seedlings; Signal Transduction; Sodium Chloride; Transcription Factors; Water | 2012 |
Differences in lead tolerance between Kandelia obovata and Acanthus ilicifolius seedlings under varying treatment times.
Topics: Acanthaceae; Cyclopentanes; Drug Tolerance; Enzyme Activation; Lead; Malondialdehyde; Oxylipins; Proline; Rhizophoraceae; Seedlings; Superoxide Dismutase; Water Pollutants, Chemical | 2013 |
Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress.
Topics: Cyclopentanes; Enzyme Activation; Enzymes; Gene Expression Regulation; Growth; Hydrogen Peroxide; Lipid Peroxidation; Malondialdehyde; Oxygen; Oxylipins; Pigments, Biological; Plant Growth Regulators; Salt Tolerance; Seedlings; Sodium Chloride; Stress, Physiological; Triticum | 2014 |
Induced resistance to Helicoverpa armigera through exogenous application of jasmonic acid and salicylic acid in groundnut, Arachis hypogaea.
Topics: Animals; Arachis; Ascorbate Peroxidases; Catalase; Catechol Oxidase; Cyclopentanes; Flavonoids; Herbivory; Hydrogen Peroxide; Larva; Lipoxygenase; Malondialdehyde; Moths; Oxylipins; Peroxidase; Phenols; Phenylalanine Ammonia-Lyase; Plant Proteins; Salicylic Acid; Superoxide Dismutase; Tannins; Trypsin Inhibitors | 2015 |
Combined toxicity of cadmium and copper in Avicennia marina seedlings and the regulation of exogenous jasmonic acid.
Topics: Avicennia; Cadmium; Chlorophyll; Copper; Cyclopentanes; Drug Interactions; Lipid Peroxidation; Malondialdehyde; Metallothionein; Oxylipins; Plant Leaves; Seedlings; Water Pollutants | 2015 |
Exogenous jasmonic acid induces stress tolerance in tobacco (Nicotiana tabacum) exposed to imazapic.
Topics: Adaptation, Physiological; Ascorbate Peroxidases; Carotenoids; Catalase; Chlorophyll; Cyclopentanes; Glutathione; Glutathione Reductase; Glutathione Transferase; Herbicides; Imidazoles; Indoleacetic Acids; Malondialdehyde; Nicotiana; Nicotinic Acids; Orobanche; Oxylipins; Pesticide Residues; Plant Growth Regulators; Plant Leaves | 2016 |
RNA-seq based transcriptomic analysis uncovers α-linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica.
Topics: alpha-Linolenic Acid; Camellia; Cold Temperature; Cyclopentanes; Electric Conductivity; Gene Expression Profiling; Gene Expression Regulation, Plant; High-Throughput Nucleotide Sequencing; Malondialdehyde; Oxylipins; Plant Growth Regulators; Plant Leaves; Plant Proteins; Protein Kinases; RNA, Plant; Sequence Analysis, RNA; Transcription Factors; Transcriptome | 2016 |
Jasmonic acid-induced tolerance to root-knot nematodes in tomato plants through altered photosynthetic and antioxidative defense mechanisms.
Topics: Animals; Antioxidants; Carboxylic Acids; Chlorophyll; Cyclopentanes; Glutathione; Hydrogen Peroxide; Malondialdehyde; Osmosis; Oxylipins; Phenols; Photosynthesis; Plant Diseases; Seedlings; Solanum lycopersicum; Tylenchoidea | 2018 |
Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense.
Topics: Abscisic Acid; Antioxidants; Azospirillum brasilense; Catalase; Cyclopentanes; Indoleacetic Acids; Malondialdehyde; Oxylipins; Plant Leaves; Plant Roots; Salicylic Acid; Stress, Physiological; Superoxide Dismutase; Zea mays | 2018 |
How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants?
Topics: Antioxidants; Ascorbate Peroxidases; Catalase; Chlorophyll; Cyclopentanes; Glycine max; Malondialdehyde; Osmotic Pressure; Oxylipins; Plant Leaves; Potassium; Proline; Salicylic Acid; Salinity; Sodium; Sodium Chloride; Superoxide Dismutase | 2018 |
Exogenous jasmonic acid decreased Cu accumulation by alfalfa and improved its photosynthetic pigments and antioxidant system.
Topics: Chlorophyll; Copper; Cyclopentanes; Hydrogen Peroxide; Malondialdehyde; Medicago sativa; Oxylipins; Photosynthesis; Plant Growth Regulators; Plant Leaves; Plant Roots | 2020 |
Methyl jasmonate alleviates arsenic toxicity in rice.
Topics: Acetates; Antioxidants; Arsenic; Cyclopentanes; Fluorescence; Glutathione; Hydrogen Peroxide; Iron; Lipid Peroxidation; Malondialdehyde; Membrane Transport Proteins; Oryza; Oxylipins; Photosynthesis; Pigments, Biological; Plant Leaves; Plant Roots | 2020 |
Vitamin E Is Superior to Vitamin C in Delaying Seedling Senescence and Improving Resistance in Arabidopsis Deficient in Macro-Elements.
Topics: Antioxidants; Arabidopsis; Arabidopsis Proteins; Ascorbic Acid; Chlorophyll; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Malondialdehyde; Oxidative Stress; Oxylipins; Plant Diseases; Plant Leaves; Reactive Oxygen Species; Seedlings; Seeds; Signal Transduction; Time Factors; Vitamin E | 2020 |
CmLOX10 positively regulates drought tolerance through jasmonic acid -mediated stomatal closure in oriental melon (Cucumis melo var. makuwa Makino).
Topics: Abscisic Acid; Arabidopsis; Cucumis melo; Cyclopentanes; Droughts; Gene Expression Regulation, Plant; Gene Silencing; Lipoxygenase; Malondialdehyde; Oxylipins; Plant Leaves; Plant Roots; Plant Stomata; Reactive Oxygen Species; Seedlings; Signal Transduction; Stress, Physiological; Transcriptome | 2020 |