malondialdehyde has been researched along with deferasirox in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 2 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Chattipakorn, N; Chattipakorn, SC; Fucharoen, S; Kumfu, S | 1 |
Chattipakorn, N; Chattipakorn, SC; Fucharoen, S; Khamseekaew, J; Kumfu, S; Srichairatanakool, S; Sripetchwandee, J; Wongjaikam, S | 1 |
2 other study(ies) available for malondialdehyde and deferasirox
Article | Year |
---|---|
Dual T-type and L-type calcium channel blocker exerts beneficial effects in attenuating cardiovascular dysfunction in iron-overloaded thalassaemic mice.
Topics: Animals; Benzoates; Calcium Channel Blockers; Calcium Channels, L-Type; Calcium Channels, T-Type; Cardiovascular Diseases; Deferasirox; Deferiprone; Deferoxamine; Dihydropyridines; Heart; Iron Chelating Agents; Iron Overload; Male; Malondialdehyde; Mice; Mice, Inbred C57BL; Mitochondria; Nitrophenols; Organophosphorus Compounds; Pyridones; Thalassemia; Triazoles | 2016 |
Combined Iron Chelator and Antioxidant Exerted Greater Efficacy on Cardioprotection Than Monotherapy in Iron-Overloaded Rats.
Topics: Acetylcysteine; Animals; Benzoates; Cardiomyopathies; Cardiotonic Agents; Deferasirox; Deferiprone; Deferoxamine; Drug Combinations; Drug Synergism; Humans; Iron; Iron Chelating Agents; Iron Overload; Iron, Dietary; Male; Malondialdehyde; Mitochondria; Pyridones; Rats; Rats, Wistar; Triazoles; Ventricular Function, Left | 2016 |