maleic-acid and catechol

maleic-acid has been researched along with catechol* in 2 studies

Other Studies

2 other study(ies) available for maleic-acid and catechol

ArticleYear
Destruction of organic pollutants by cerium(IV) MEO process: a study on the influence of process conditions for EDTA mineralization.
    Journal of hazardous materials, 2008, Feb-11, Volume: 150, Issue:3

    The mediated electrochemical oxidation (MEO) process with cerium(IV) and nitric acid as the oxidizing medium was employed for the destruction of various model organic pollutants in continuous organic feeding mode. A near complete destruction was observed for all the organics studied. The effects of various experimental conditions were evaluated with respect to EDTA mineralization. The key parameters varied in the process were concentration of EDTA (67-268 mM), temperature (70, 80 and 95 degrees C), concentrations of Ce(IV) (0.7, 0.8 and 0.95 M), nitric acid (2, 3 and 4M) and duration of organic addition (30 and 120 min). Under the experimental conditions of 80 degrees C and 0.95 M Ce(IV) in 3 M nitric acid, nearly 90% destruction was achieved based on CO(2) production and 95% based on TOC analyses for all the organic compounds studied. The in situ regeneration of mediator ion by the electrochemical cell was found to be good during the organic destruction within the range of experimental conditions studied. In the case of long term organic feeding (120 min) the destruction was calculated after the CO(2) evolution attained the steady state and under this condition the destruction efficiency was found to be 85% based on CO(2) evolution.

    Topics: Benzoquinones; Catechols; Cerium; Edetic Acid; Electrochemistry; Environmental Pollutants; Hydroquinones; Maleates; Nitric Acid; Oxalic Acid; Oxidation-Reduction; Phenol; Temperature

2008
A tricarboxylic acid cycle intermediate regulating transcription of a chloroaromatic biodegradative pathway: fumarate-mediated repression of the clcABD operon.
    Journal of bacteriology, 1997, Volume: 179, Issue:21

    The ortho-cleavage pathways of catechol and 3-chlorocatechol are central catabolic pathways of Pseudomonas putida that convert aromatic and chloroaromatic compounds to tricarboxylic acid (TCA) cycle intermediates. They are encoded by the evolutionarily related catBCA and clcABD operons, respectively. Expression of the cat and clc operons requires the LysR-type transcriptional activators CatR and ClcR, respectively, and the inducer molecules cis,cis-muconate and 2-chloro-cis,cis-muconate, respectively. The regulation of the cat and clc promoters has been well studied, but the extent to which these operons are repressed by growth in TCA cycle intermediates has not been explored. We demonstrate by transcriptional fusion studies that the expression from the clc promoter is repressed when the cells are grown on succinate, citrate, or fumarate and that this repression is ClcR dependent and occurs at the transcriptional level. The presence of these organic acids did not affect the expression from the cat promoter. In vitro transcription assays demonstrate that the TCA cycle intermediate fumarate directly and specifically inhibits the formation of the clcA transcript. No such inhibition was observed when CatR was used as the activator on either the cat or clc template. Titration studies of fumarate and 2-chloromuconate show that the fumarate effect is concentration dependent and reversible, indicating that fumarate and 2-chloromuconate most probably compete for the same binding site on ClcR. This is an interesting example of the transcriptional regulation of a biodegradative pathway by the intracellular sensing of the state of the TCA cycle.

    Topics: Bacterial Proteins; Biodegradation, Environmental; Catechols; Chlorophenols; Citric Acid Cycle; Enzyme Repression; Fumarates; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Enzymologic; Maleates; Operon; Pseudomonas putida; Sorbic Acid; Trans-Activators; Transcription, Genetic

1997