maleic-acid and 3-phenylpropionic-acid

maleic-acid has been researched along with 3-phenylpropionic-acid* in 2 studies

Other Studies

2 other study(ies) available for maleic-acid and 3-phenylpropionic-acid

ArticleYear
Crystal structures of Paracoccus denitrificans aromatic amino acid aminotransferase: a substrate recognition site constructed by rearrangement of hydrogen bond network.
    Journal of molecular biology, 1998, Jul-17, Volume: 280, Issue:3

    Aminotransferase reversibly catalyzes the transamination reaction by a ping-pong bi-bi mechanism with pyridoxal 5'-phosphate (PLP) as a cofactor. Various kinds of aminotransferases developing into catalysts for particular substrates have been reported. Among the aminotransferases, aromatic amino acid aminotransferase (EC 2.6.1. 57) catalyzes the transamination reaction with both acidic substrates and aromatic substrates. To elucidate the multiple substrate recognition mechanism, we determined the crystal structures of aromatic amino acid aminotransferase from Paracoccus denitrificans (pdAroAT): unliganded pdAroAT, pdAroAT in a complex with maleate as an acidic substrate analog, and pdAroAT in a complex with 3-phenylpropionate as an aromatic substrate analog at 2.33 A, 2. 50 A and 2.30 A resolution, respectively. The pdAroAT molecule is a homo-dimer. Each subunit has 394 amino acids and one PLP and is divided into small and large domains. The overall structure of pdAroAT is essentially identical to that of aspartate aminotransferase (AspAT) which catalyzes the transamination reaction with only an acidic amino acid. On binding the acidic substrate analog, arginine 292 and 386 form end-on salt bridges with carboxylates of the analog. Furthermore, binding of the substrate induces the domain movement to close the active site. The recognition mechanism for the acidic substrate analog in pdAroAT is identical to that observed in AspAT. Binding of the aromatic substrate analog causes reorientation of the side-chain of the residues, lysine 16, asparagine 142, arginine 292* and serine 296*, and changes in the position of water molecules in the active site to form a new hydrogen bond network in contrast to the active site structure of pdAroAT in the complex with an acidic substrate analog. Consequently, the rearrangement of the hydrogen bond network can form recognition sites for both acidic and aromatic side-chains of the substrate without a conformational change in the backbone structure in pdAroAT.

    Topics: Bacterial Proteins; Binding Sites; Crystallography, X-Ray; Enzyme Inhibitors; Hydrogen Bonding; Maleates; Models, Molecular; Paracoccus denitrificans; Phenylpropionates; Protein Conformation; Substrate Specificity; Transaminases

1998
Redesign of the substrate specificity of Escherichia coli aspartate aminotransferase to that of Escherichia coli tyrosine aminotransferase by homology modeling and site-directed mutagenesis.
    Protein science : a publication of the Protein Society, 1995, Volume: 4, Issue:9

    Although several high-resolution X-ray crystallographic structures have been determined for Escherichia coli aspartate aminotransferase (eAATase), efforts to crystallize E. coli tyrosine aminotransferase (eTATase) have been unsuccessful. Sequence alignment analyses of eTATase and eAATase show 43% sequence identity and 72% sequence similarity, allowing for conservative substitutions. The high similarity of the two sequences indicates that both enzymes must have similar secondary and tertiary structures. Six active site residues of eAATase were targeted by homology modeling as being important for aromatic amino acid reactivity with eTATase. Two of these positions (Thr 109 and Asn 297) are invariant in all known aspartate aminotransferase enzymes, but differ in eTATase (Ser 109 and Ser 297). The other four positions (Val 39, Lys 41, Thr 47, and Asn 69) line the active site pocket of eAATase and are replaced by amino acids with more hydrophobic side chains in eTATase (Leu 39, Tyr 41, Ile 47, and Leu 69). These six positions in eAATase were mutated by site-directed mutagenesis to the corresponding amino acids found in eTATase in an attempt to redesign the substrate specificity of eAATase to that of eTATase. Five combinations of the individual mutations were obtained from mutagenesis reactions. The redesigned eAATase mutant containing all six mutations (Hex) displays second-order rate constants for the transamination of aspartate and phenylalanine that are within an order of magnitude of those observed for eTATase. Thus, the reactivity of eAATase with phenylalanine was increased by over three orders of magnitude without sacrificing the high transamination activity with aspartate observed for both enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Aspartate Aminotransferases; Binding Sites; Drug Design; Enzyme Inhibitors; Escherichia coli; Kinetics; Maleates; Molecular Structure; Mutagenesis, Site-Directed; Phenylalanine; Phenylpropionates; Protein Conformation; Sequence Homology; Substrate Specificity; Tyrosine Transaminase

1995