magnesium-trisilicate has been researched along with clinoptilolite* in 4 studies
1 review(s) available for magnesium-trisilicate and clinoptilolite
Article | Year |
---|---|
The efficacy of mycotoxin binders to control mycotoxins in feeds and the potential risk of interactions with nutrient: a review.
Mycotoxicosis are a common problem in livestock, where a group of six major mycotoxins represents a high risk for animal health and production profits. Mycotoxin binders (MTB) can reduce the mycotoxin burden in the gastrointestinal tract of the animal. Mycotoxin binders are classified in inorganic, as clays and activated carbon (AC), and organic, as yeast cell wall (YCW) and micro-ionized fibers. The adsorption of mycotoxins into MTB is due to: 1) chemical interactions where the cation exchange capacity involves different types of bounds like ion-dipole, Van der Walls forces, or hydrogen bonds; and 2) to physical characteristics of MTB like pore size, or mycotoxin structure and shape. The adsorption capacity of MTB is determined using different in vitro tests that mimic the gastrointestinal tract of the animals. A literature search was conducted to identify in vitro research where the efficacy of adsorption of MTB was determined. The search was based on 8 MTB [AC, bentonite, clinoptilolite, hydrated sodium calcium aluminosilicate (HSCAS), montmorillonite (MMT), sepiolite, YCW and zeolite] and 6 mycotoxins [aflatoxin (AF), deoxynivalenol (DON), fumonisin (FUM), ochratoxin (OTA), T-2 toxin and zearalenone (ZEA)]. Sixty-eight papers with 1842 data were selected and analyzed with the PROC MIXED of SAS. The response variable was the percentage mycotoxins adsorption by MTB, and the model included the fixed effects of MTB, mycotoxins, incubation media, pH and their interactions, and the random effect of the study. Differences were considered significant when P < 0.05 and with tendency when 0.05 < P < 0.10. The mycotoxins adsorption capacity was 83% ± 1.0 for AC, 76% ± 3.1 for MMT, 62% ± 1.0 for bentonite, 55% ± 1.9 for HSCAS, 52% ± 9.1 for sepiolite, 52% ± 4.3 for clinoptilolite and 44% ± 0.4 for YCW. For mycotoxins, the adsorption of AF was 76% ± 0.6, for FUM was 50% ± 1.8, for OTA was 42% ± 1.0, for ZEA was 48% ± 1.1, for DON was 35% ± 1.6, and for T-2 was 27% ± 2.8. The pH affected the adsorption capacity of YCW with higher adsorption at low pH, and the adsorption of OTA and ZEA, where OTA adsorption tended to be lower at intermediate pH, and adsorption of ZEA tended to be higher at the two-steps pH. The potential adsorption of some essential nutrients, including amino acids and vitamins, should also be considered. Results should be used as a guide in the selection of the appropriate mycotoxin binder based on the predominant mycotoxin in feeds.. Animal feeds are highly susceptible to mycotoxin contamination during harvest, storage, and processing. Mycotoxin binders represent an effective strategy to prevent mycotoxicosis in animals when supplemented into the diet. The efficacy of adsorption depends on the type of binder (inorganic or organic) and the physico-chemical properties of binders and mycotoxins. Data reviewed from the literature indicates that activated carbon has the highest adsorption capacity among different binders, and aflatoxins is the most adsorbed mycotoxin. However, the unspecific nature of the binding process results in some essential nutrients being also adsorbed. Topics: Adsorption; Animal Feed; Animals; Bentonite; Food Contamination; Fumonisins; Mycotoxins; Nutrients; Yeasts; Zearalenone | 2022 |
3 other study(ies) available for magnesium-trisilicate and clinoptilolite
Article | Year |
---|---|
Effect of Clinoptilolite and Sepiolite Nanoclays on Human and Parasitic Highly Phagocytic Cells.
Nanoclays have potential applications in biomedicine raising the need to evaluate their toxicity in in vitro models as a first approach to its biocompatibility. In this study, in vitro toxicity of clinoptilolite and sepiolite nanoclays (NC) was analyzed in highly phagocytic cultures of amoebas and human and mice macrophages. While amebic viability was significantly affected only by sepiolite NC at concentrations higher than 0.1 mg/mL, the effect on macrophage cultures was dependent on the origin of the cells. Macrophages derived from human peripheral blood monocytes were less affected in viability (25% decrease at 48 h), followed by the RAW 264.7 cell line (40%), and finally, macrophages derived from mice bone marrow monocytes (98%). Moreover, the cell line and mice macrophages die mainly by necrosis, whereas human macrophages exhibit increased apoptosis. Cytokine expression analysis in media of sepiolite NC treated cultures showed a proinflammatory profile (INFγ, IL-1α, IL-8, and IL-6), in contrast with clinoptilolite NC that induced lees cytokines with concomitant production of IL-10. The results show that sepiolite NC is more toxic to amoebas and macrophages than clinoptilolite NC, mostly in a time and dose-dependent manner. However, the effect of sepiolite NC was comparable with talc powder suggesting that both NC have low cytotoxicity in vitro. Topics: Aluminum Silicates; Animals; Cell Differentiation; Clay; Gene Expression; Humans; Interleukin-10; Interleukin-6; Interleukin-8; Macrophages; Magnesium Silicates; Mice; Tumor Necrosis Factor-alpha; Zeolites | 2015 |
Lead removal in fixed-bed columns by zeolite and sepiolite.
The removal efficiency of zeolite (clinoptilolite) and sepiolite from lead containing aqueous solutions was investigated. A series of experiments were conducted in batch-wise and fixed-bed columns. Synthetic wastewaters containing lead (50 mg l (-1)) and acetic acid (0.001 N) along with untreated and regenerated clinoptilolites and sepiolites were used in the adsorption studies. Batch tests were mainly conducted to isolate the magnitude of lead precipitation from real adsorption. Adsorption isotherms for both abstraction and adsorption were constructed. The removal of lead is found to be a sum of adsorption induced by ion exchange and precipitation of lead hydroxide. The breakthrough curves were obtained under different conditions by plotting the normalized effluent lead concentration (C/C0) versus bed volume (BV). The ion exchange capacity of sepiolite and clinoptilolite for lead removal showed good performance up to approximately 100 and 120 BV where the C/C0 remained below 0.1, respectively. The lead removal capacity of clinoptilolite bed from wastewater containing only lead yielded 45% higher performance compared to that of acetic acid partly due to a decrease in the effluent pH and consequently in precipitation. Also, the presence of acetic acid in the sepiolite column decreased the bed volumes treated by about 40%. Removal efficiency of lead-acetic system both in untreated clinoptilolite and sepiolite columns was found higher than that in regenerated columns. Topics: Acetic Acid; Adsorption; Chemical Precipitation; Hydrogen-Ion Concentration; Ion Exchange; Lead; Magnesium Silicates; Waste Disposal, Fluid; Water Pollutants, Chemical; Water Purification; Zeolites | 2005 |
Aflatoxin B1 binding to sorbents in bovine ruminal fluid.
A recent approach to the problem of contamination of agricultural products by aflatoxin B(1) (AFB(1)) is to add non-nutritional adsorbents to animal diets in order to sequester ingested aflatoxins. We conducted in vitro experiments to develop a rapid and cheap model using ruminal fluid to assess the ability of sorbent materials to bind AFB(1). Seven sorbents (hydrated sodium calcium aluminosilicate; clinoptilolite; zeolite; two types of bentonite; sepiolite; and PHIL 75), commonly added to bovine diets were incubated in water and ruminal fluid in the presence of AFB(1). Hydrated sodium calcium aluminosilicate, sepiolite and one of the bentonites bound 100% of the AFB(1) in the presence of both ruminal fluid and water; clinoptilolite bound about 80% of AFB(1) in both liquids; whereas the affinities for the mycotoxin of zeolite (50%) and the other sample of bentonite (60%) in water seem to be increased by about 40% in ruminal fluid incubations. PHIL 75 had the poorest binding ability: about 30% in water and 45% in ruminal fluid. In view of the differences in toxin binding in water and ruminal fluid, it is preferable to use the ruminal fluid model for the in vitro pre-screening of sorbent materials potentially useful as adjuvants to ruminant feeds. Topics: Adsorption; Aflatoxin B1; Animals; Bentonite; Body Fluids; Cattle; Magnesium Silicates; Rumen; Zeolites | 2005 |