lysine-tyrosylquinone and tryptophan-tryptophylquinone

lysine-tyrosylquinone has been researched along with tryptophan-tryptophylquinone* in 6 studies

Reviews

5 review(s) available for lysine-tyrosylquinone and tryptophan-tryptophylquinone

ArticleYear
Protein-Derived Cofactors Revisited: Empowering Amino Acid Residues with New Functions.
    Biochemistry, 2018, 06-05, Volume: 57, Issue:22

    A protein-derived cofactor is a catalytic or redox-active site in a protein that is formed by post-translational modification of one or more amino acid residues. These post-translational modifications are irreversible and endow the modified amino acid residues with new functional properties. This Perspective focuses on the following advances in this area that have occurred during recent years. The biosynthesis of the tryptophan tryptophylquinone cofactor is catalyzed by a diheme enzyme, MauG. A bis-Fe

    Topics: Amino Acids; Coenzymes; Dipeptides; Electron Transport; Heme; Humans; Indolequinones; Lysine; Models, Molecular; Oxidation-Reduction; Oxidoreductases Acting on CH-NH Group Donors; Protein Processing, Post-Translational; Quinones; Tryptophan

2018
Mechanisms of biosynthesis of protein-derived redox cofactors.
    Vitamins and hormones, 2001, Volume: 61

    Prior to 1990, redox cofactors were widely believed to be small molecule, dissociable compounds. In the past 10 years, however, four novel redox cofactors have been discovered, each of which is derived from posttranslational modification of specific amino acids within their cognate enzymes. These include topa quinone, found in copper amine oxidases, lysine tyrosyl quinone, found in lysyl oxidase, tryptophan tryptophylquinone, found in methylamine dehydrogenase, and the cysteine-cross-linked tyrosine found in galactose oxidase. The processes by which these cofactors are formed, called biogenesis, is currently a major focus of mechanistic work in this field. In this review, the latest progress toward elucidating the various biogenesis mechanisms is discussed, along with possible linkages between the chemistries involved in catalysis and biogenesis.

    Topics: Amino Acid Oxidoreductases; Amino Acids; Coenzymes; Dihydroxyphenylalanine; Galactose Oxidase; Indolequinones; Lysine; Oxidation-Reduction; Quinones; Tryptophan

2001
Physiological importance of quinoenzymes and the O-quinone family of cofactors.
    The Journal of nutrition, 2000, Volume: 130, Issue:4

    O-quinone cofactors derived from tyrosine and tryptophan are involved in novel biological reactions that range from oxidative deaminations to free-radical redox reactions. The formation of each of these cofactors appears to involve post-translational modifications of either tyrosine or tryptophan residues. The modifications result in cofactors, such as topaquinone (TPQ), tryptophan tryptophylquinone (TTQ), lysine tyrosylquinone (LTQ) or the copper-complexed cysteinyl-tyrosyl radical from metal-catalyzed reactions. Pyrroloquinoline quinone (PQQ) appears to be formed from the annulation of peptidyl glutamic acid and tyrosine residues stemming from their modification as components of a precursor peptide substrate. PQQ, a primary focus of this review, has invoked considerable interest because of its presence in foods, antioxidant properties and role as a growth-promoting factor. Although no enzymes in animals have been identified that exclusively utilize PQQ, oral supplementation of PQQ in nanomolar amounts increases the responsiveness of B- and T-cells to mitogens and improves neurologic function and reproductive outcome in rodents. Regarding TPQ and LTQ, a case may be made that the formation of TPQ and LTQ is also influenced by nutritional status, specifically dietary copper. For at least one of the amine oxidases, lysyl oxidase, enzymatic activity correlates directly with copper intake. TPQ and LTQ are generated following the incorporation of copper by a process that involves the two-step oxidation of a specified tyrosyl residue to first peptidyl dopa and then peptidyl topaquinone to generate active enzymes, generally classed as "quinoenzymes." Limited attention is also paid to TTQ and the copper-complexed cysteinyl-tyrosyl radical, cofactors important to fungal and bacterial redox processes.

    Topics: Animals; Coenzymes; Dihydroxyphenylalanine; Enzymes; Humans; Indolequinones; Lysine; PQQ Cofactor; Quinolones; Quinones; Tryptophan

2000
[Built-in cofactors: amino acid residue-derived new cofactors].
    Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme, 1999, Volume: 44, Issue:13

    Topics: Amino Acids; Animals; Catalysis; Coenzymes; Dihydroxyphenylalanine; Indolequinones; Lysine; Protein Processing, Post-Translational; Quinones; Tryptophan

1999
Quinoprotein-catalysed reactions.
    The Biochemical journal, 1996, Dec-15, Volume: 320 ( Pt 3)

    This review is concerned with the structure and function of the quinoprotein enzymes, sometimes called quinoenzymes. These have prosthetic groups containing quinones, the name thus being analogous to the flavoproteins containing flavin prosthetic groups. Pyrrolo-quinoline quinone (PQQ) is non-covalently attached, whereas tryptophan tryptophylquinone (TTQ), topaquinone (TPQ) and lysine tyrosylquinone (LTQ) are derived from amino acid residues in the backbone of the enzymes. The mechanisms of the quinoproteins are reviewed and related to their recently determined three-dimensional structures. As expected, the quinone structures in the prosthetic groups play important roles in the mechanisms. A second common feature is the presence of a catalytic base (aspartate) at the active site which initiates the reactions by abstracting a proton from the substrate, and it is likely to be involved in multiple reactions in the mechanism. A third common feature of these enzymes is that the first part of the reaction produces a reduced prosthetic group; this part of the mechanism is fairly well understood. This is followed by an oxidative phase involving electron transfer reactions which remain poorly understood. In both types of dehydrogenase (containing PQQ and TTQ), electrons must pass from the reduced prosthetic group to redox centres in a second recipient protein (or protein domain), whereas in amine oxidases (containing TPQ or LTQ), electrons must be transferred to molecular oxygen by way of a redox-active copper ion in the protein.

    Topics: Alcohol Oxidoreductases; Amine Oxidase (Copper-Containing); Bacterial Proteins; Binding Sites; Coenzymes; Dihydroxyphenylalanine; Disulfides; Electron Transport; Indolequinones; Lysine; Models, Chemical; Models, Molecular; Molecular Structure; Oxidation-Reduction; Oxidoreductases Acting on CH-NH Group Donors; PQQ Cofactor; Protein-Lysine 6-Oxidase; Quinolones; Quinones; Tryptophan

1996

Other Studies

1 other study(ies) available for lysine-tyrosylquinone and tryptophan-tryptophylquinone

ArticleYear
Amine-oxidizing quinoproteins.
    Methods in enzymology, 1997, Volume: 280

    Topics: Amino Acid Sequence; Coenzymes; Copper; Diabetes Mellitus; Dihydroxyphenylalanine; Electron Spin Resonance Spectroscopy; Enzyme Inhibitors; Heart Failure; Humans; Indolequinones; Liver Cirrhosis; Lysine; Menkes Kinky Hair Syndrome; Metalloproteins; Mixed Function Oxygenases; Models, Molecular; Molecular Sequence Data; Oxidation-Reduction; Oxidoreductases Acting on CH-NH Group Donors; PQQ Cofactor; Protein-Lysine 6-Oxidase; Quinolones; Quinones; Semicarbazides; Sequence Homology, Amino Acid; Spectrum Analysis, Raman; Stereoisomerism; Substrate Specificity; Tryptophan

1997