ly-53857 has been researched along with 1-(3-chlorophenyl)piperazine* in 3 studies
3 other study(ies) available for ly-53857 and 1-(3-chlorophenyl)piperazine
Article | Year |
---|---|
Meta-chlorophenylpiperazine induced changes in locomotor activity are mediated by 5-HT1 as well as 5-HT2C receptors in mice.
1-(Meta-chloro)phenylpiperazine (m-CPP) is a 5-HT receptor agonist which has been purported to be relatively selective for the 5-HT2C receptor. In particular, the hypolocomotion produced by m-CPP has been suggested to be mediated by 5-HT2C receptors. m-CPP binds with high affinity to 5-HT1 as well as 5-HT2 receptors, thus effects of m-CPP on locomotor activity may be due to the physiologic summation of the actions of m-CPP at 5-HT1 as well as 5-HT2 receptors. The present study investigated the effects of m-CPP alone and in the presence of the 5-HT2 receptor antagonist 6-methyl-1-(-methyethyl)-ergoline-8beta-carboxylic acid 2-hydroxy-1-methylpropyl ester maleate (LY53857), the 5-HT1A receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl]-N-(2pyridinyl)c yclohexanecarboxamide trihydrochloride (WAY 100,635), and the 5-HT(1B/1D) receptor antagonist 2'-methyl-4'-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-corbox ylic acid [4-methoxy-3-(4-methyl-piperazin-1-yl)-phenyl]amide (GR 127935) on locomotor activity. Administration of m-CPP alone (0.3-10 mg/kg) produced a dose-related decrease in locomotor activity. The 5-HT(1B/1D) receptor antagonist GR 127935 (3.0 mg/kg) in combination with m-CPP produced a slight leftward shift of the dose-response curve of m-CPP. The 5-HT1A receptor antagonist WAY 100,635 (1.0 mg/kg) in combination with m-CPP did not alter the m-CPP dose-response curve. The non-selective 5-HT2 receptor antagonist LY53857 (1.0 mg/kg) in combination with m-CPP unmasked a hyperlocomotion produced by m-CPP. Furthermore, the hyperlocomotion produced by m-CPP in the presence of LY53857 (1.0 mg/kg) was blocked by both the 5-HT(1B/1D) receptor antagonist GR 127935 (3.0 mg/kg) and the 5-HT1A receptor antagonist WAY 100,635 (1.0 mg/kg). The present results demonstrate that the hyperlocomotion seen with the combination of m-CPP and LY53857 is mediated by 5-HT1 receptors. Taken together the data indicate that m-CPP affects locomotor activity by the physiologic summation of agonist activity at the 5-HT2C receptor as well as the 5-HT1 receptor family. Topics: Animals; Dose-Response Relationship, Drug; Ergolines; Male; Mice; Motor Activity; Oxadiazoles; Piperazines; Pyridines; Receptor, Serotonin, 5-HT1B; Receptor, Serotonin, 5-HT1D; Receptor, Serotonin, 5-HT2C; Receptors, Serotonin; Receptors, Serotonin, 5-HT1; Serotonin Antagonists; Serotonin Receptor Agonists | 1998 |
Excitatory responses to serotonin (5-HT) in neurons of the rat piriform cortex: evidence for mediation by 5-HT1C receptors in pyramidal cells and 5-HT2 receptors in interneurons.
As a prerequisite to pharmacological analysis of the excitatory effects of serotonin (5-HT) on piriform pyramidal cells and interneurons, this study first examined the physiological characteristics of these two cell types. Intracellular recordings confirmed that the subpopulation of 5-HT-activated cells located at the border of layers II and III are indeed interneurons. Voltage clamp recordings in pyramidal cells showed that the increase in excitability produced by 5-HT in these cells was the result of voltage- and Ca(2+)-dependent outward currents with the characteristics of IM and IAHP. Pharmacological studies were designed to discriminate 5-HT2 from 5-HT1C responses in interneurons and pyramidal cells of piriform cortex. The 5-HT antagonist spiperone, which has a much higher affinity for 5-HT2 receptors than for 5-HT1C receptors, blocked the excitatory effect of 5-HT at lower concentrations in interneurons (IC50 = 31 nM) than in pyramidal cells (IC50 = 2.1 microM). Similarly, ritanserin, a drug which also has a higher affinity for 5-HT2 than 5-HT1C receptors, blocked the effect of 5-HT at lower concentrations in interneurons (IC50 = 400 nM) than in pyramidal cells (IC50 = 8.1 microM). In contrast, LY 53857, an antagonist with higher affinity for 5-HT1C than for 5-HT2 receptors, blocked the effect of 5-HT at lower concentrations in pyramidal cells (IC50 = 26 nM) than in interneurons (IC50 = 364 nM). The 5-HT1C partial agonist/5-HT2 antagonist mCPP produced agonist-like effects in only 66% of pyramidal cells tested indicating that not all pyramidal cells may express 5-HT1C receptors. In that both spiperone and ritanserin have higher affinity for 5-HT2 receptors than for 5-HT1C receptors and LY 53857 has a higher affinity for 5-HT1C receptors than for 5-HT2 receptors, these data suggest that in piriform cortex excitatory effects of 5-HT are mediated by 5-HT1C receptors in pyramidal cells an by 5-HT2 receptors in interneurons. Topics: Animals; Electrophysiology; Ergolines; Interneurons; Limbic System; Male; Neurons; Piperazines; Rats; Rats, Inbred Strains; Receptors, Serotonin; Ritanserin; Serotonin; Serotonin Antagonists; Spiperone | 1991 |
Effect of serotoninergic drugs on stress-induced hyperthermia (SIH) in mice.
8-OH-DPAT (2.5-10 mg/kg) and buspirone (10 mg/kg) but not 5,7-DHT (200 micrograms/mouse), pCPA (75 and 150 mg/kg, three times), ritanserin (0.1 and 0.2 mg/kg), LY 53857 (1.5 and 3 mg/kg), GR 38032 F (0.1-100 micrograms/kg), TFMPP (5 and 20 mg/kg) and mCPP (2.5 and 5 mg/kg) antagonized the rise in body temperature that occurs to the last mice removed from their group housing, which was termed as stress-induced hyperthermia (SIH). Ro 15-1788, at a dose which blocked the effect of diazepam on SIH, did not reverse the anxiolytic effect of buspirione. Instead, when cerebral 5-HT content was reduced to 50% by 5,7-DHT-induced lesion, the effect of buspirone on SIH was decreased. TFMPP 5 mg/kg did not shorten significantly the onset of SIH as could have been expected by an anxiogenic drug, while the dose of 20 mg/kg did not modify the pattern of SIH at all. The lower dose of TFMPP evoked a hyperthermic and the higher a hypothermic response. Topics: 5,7-Dihydroxytryptamine; 8-Hydroxy-2-(di-n-propylamino)tetralin; Animals; Anti-Anxiety Agents; Body Temperature Regulation; Buspirone; Diazepam; Ergolines; Fenclonine; Fever; Flumazenil; Imidazoles; Male; Mice; Ondansetron; Piperazines; Piperidines; Ritanserin; Serotonin; Serotonin Antagonists; Stress, Psychological; Tetrahydronaphthalenes | 1990 |