ly-341495 and alpha-methyl-4-carboxyphenylglycine

ly-341495 has been researched along with alpha-methyl-4-carboxyphenylglycine* in 3 studies

Other Studies

3 other study(ies) available for ly-341495 and alpha-methyl-4-carboxyphenylglycine

ArticleYear
Olfactory nerve-evoked, metabotropic glutamate receptor-mediated synaptic responses in rat olfactory bulb mitral cells.
    Journal of neurophysiology, 2006, Volume: 95, Issue:4

    The group I metabotropic glutamate receptor (mGluR) subtype, mGluR1, is highly expressed on the apical dendrites of olfactory bulb mitral cells and thus may be activated by glutamate released from olfactory nerve (ON) terminals. Previous studies have shown that mGluR1 agonists directly excite mitral cells. In the present study, we investigated the involvement of mGluR1 in ON-evoked responses in mitral cells in rat olfactory bulb slices using patch-clamp electrophysiology. In voltage-clamp recordings, the average EPSC evoked by single ON shocks or brief trains of ON stimulation (six pulses at 50 Hz) in normal physiological conditions were not significantly affected by the nonselective mGluR antagonist LY341495 (50-100 microM) or the mGluR1-specific antagonist LY367385 (100 microM); ON-evoked responses were attenuated, however, in a subset (36%) of cells. In the presence of blockers of ionotropic glutamate and GABA receptors, application of the glutamate uptake inhibitors THA (300 microM) and TBOA (100 microM) revealed large-amplitude, long-duration responses to ON stimulation, whereas responses elicited by antidromic activation of mitral/tufted cells were unaffected. Magnitudes of the ON-evoked responses elicited in the presence of THA-TBOA were dependent on stimulation intensity and frequency, and were maximal during high-frequency (50-Hz) bursts of ON spikes, which occur during odor stimulation. ON-evoked responses elicited in the presence of THA-TBOA were significantly reduced or completely blocked by LY341495 or LY367385 (100 microM). These results demonstrate that glutamate transporters tightly regulate access of synaptically evoked glutamate from ON terminals to postsynaptic mGluR1s on mitral cell apical dendrites. Taken together with other findings, the present results suggest that mGluR1s may not play a major role in phasic responses to ON input, but instead may play an important role in shaping slow oscillatory activity in mitral cells and/or activity-dependent regulation of plasticity at ON-mitral cell synapses.

    Topics: Amino Acids; Animals; Aspartic Acid; Benzoates; Dopamine D2 Receptor Antagonists; Electrophysiology; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Female; GABA-B Receptor Antagonists; Glutamic Acid; Glycine; In Vitro Techniques; Male; Neuronal Plasticity; Neurons, Afferent; Odorants; Olfactory Bulb; Olfactory Nerve; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D2; Receptors, GABA-B; Receptors, Metabotropic Glutamate; Synapses; Tacrine; Xanthenes

2006
Changes in rat serum corticosterone after treatment with metabotropic glutamate receptor agonists or antagonists.
    Journal of neuroendocrinology, 2001, Volume: 13, Issue:8

    From previous work, it appears that glutamate can activate the hypothalamic-pituitary-adrenocortical (HPA) axis by an interaction at either ionotopic or metabotropic (G-protein coupled) receptors. For example, (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate (ACPD), a metabotropic glutamate (mGlu) receptor agonist, has been shown to increase the levels of serum corticosterone in rats. The present study was undertaken to further characterize which of the mGlu receptors are substantially involved in control of the HPA axis. The group I mGlu receptor agonists, 3,5-dihydroxyphenylglycine (DHPG), 1S,3R-ACPD, and 2-chloro-5-hydroxyphenylglycine (CHPG) but not the inactive isomer 1R,3S-ACPD were found to dose-dependently increase serum corticosterone 1 h after intracerebroventricular (i.c.v.) injection in male rats. The relative potency, DHPG (EC50 = 520 nmol) > 1S,3R-ACPD (1.4 micromol) = CHPG (2.7 micromol) >> 1R,3S-ACPD (>> 3 micromol) is consistent with activation of group I (mGlu1/5) receptors. The effects of DHPG were long lasting with substantial elevations in corticosterone remaining for at least 3 h. In a similar manner, the group III mGlu receptor agonists, L-AP4 (4-phosphono-2-aminobutyric acid) and L-SOP (serine-O-phosphate), were found to increase serum corticosterone levels at 1 h. In contrast, the mGlu group II selective agonists LY354740 (10 mg/kg, i.p.) and subtype-selective doses of the group II antagonist LY341495 (1 mg/kg, i.p.) did not significantly elevate serum corticosterone. Given the group I agonists results, it was surprising to find that group I selective and mGlu1 selective antagonists given alone also increased serum corticosterone. As with the agonists, the rise in serum corticosterone with LY393675 (an mGlu1/5 antagonist, EC50 = 20 nmol, i.c.v.) and LY367385 (an mGlu1 antagonist, 325 nmol, i.c.v.) were dose-dependent and consistent with their relative affinity for the group I mGlu receptors. The selective mGlu5 antagonist MPEP [2-methyl-6-(phenylethylnyl)pyridine] increased serum corticosterone but only at high doses (> 30 mg/kg, i.p.). A model involving the high glutamatergic tone on GABAergic interneurons in the paraventricular nucleus of the hypothalamus is discussed as a possible explanation for these results.

    Topics: Adrenalectomy; Adrenocorticotropic Hormone; Amino Acids; Animals; Benzoates; Bridged Bicyclo Compounds; Corticosterone; Cycloleucine; Dose-Response Relationship, Drug; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Glycine; Male; Neuroprotective Agents; Paraventricular Hypothalamic Nucleus; Phenylacetates; Propionates; Pyridines; Rats; Rats, Sprague-Dawley; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Resorcinols; Xanthenes

2001
Pharmacological analysis of 4-carboxyphenylglycine derivatives: comparison of effects on mGluR1 alpha and mGluR5a subtypes.
    Neuropharmacology, 1995, Volume: 34, Issue:8

    The antagonist effects of the 4-carboxyphenylglycines: (S)-4-carboxy-3hydroxyphenylglycine (4C3HPG), (S)-4-carboxyphenylglycine (4CPG) and (+)-alpha-methyl-4-carboxyphenylglycine (M4CPG) were compared on functional responses of human metabotropic glutamate receptor (mGluR) subtypes mGluR1 alpha and mGluR5a. These receptors both belong to group 1 type mGluRs which couple to the phosphoinositide (PI) hydrolysis/[Ca2+]i mobilization signal transduction pathway and are closely related in both structure and agonist pharmacology. In this study, the IC50 values obtained for quisqualate induced PI hydrolysis responses show that although all the phenylglycines are antagonists for both mGluR1 alpha and mGluR5a, the compounds exhibit differential potencies at these receptor subtypes. The 4C3HPG derivative was the most potent antagonist for both mGluR1 alpha (IC50 range: 19-50 microM) and mGluR5a (IC50 range: 53-280 microM). 4CPG produced an IC50 range of 4r-72 microM for mGluR1 alpha and 150-156 microM for mGluR5a cells. The potency of the M4CPG could not be distinguished from that of 4CPG with IC50 ranges of 29-100 microM and 115-210 microM for mGluR1 alpha and mGluR5a respectively. Further characterization of the dose-response effects of the compounds on quisqualate induced [Ca2+]i mobilization showed that although the magnitude of phenylglycine inhibition was reduced for both mGluR subtypes compared to those observed for stimulation of PI hydrolysis (except for 4C3HPG on mGluR1 alpha), similar differences in the relative potencies of the phenylglycines between mGluR1 alpha (IC50s: 40 +/- 10 microM for 4C3HPG: 300-1000 microM for 4CPG and M4CPG) and mGluR5a (IC50s: > 1000 microM) were evident.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Animals; Benzoates; Calcium; Cells, Cultured; Excitatory Amino Acid Antagonists; Glycine; Humans; Hydrolysis; Phosphatidylinositols; Quisqualic Acid; Rats; Receptors, Metabotropic Glutamate; Signal Transduction

1995