ly-320135 and 4-(3-3-4-p-menthadien-(1-8)-yl)olivetol

ly-320135 has been researched along with 4-(3-3-4-p-menthadien-(1-8)-yl)olivetol* in 1 studies

Other Studies

1 other study(ies) available for ly-320135 and 4-(3-3-4-p-menthadien-(1-8)-yl)olivetol

ArticleYear
Anandamide-mediated CB1/CB2 cannabinoid receptor--independent nitric oxide production in rabbit aortic endothelial cells.
    The Journal of pharmacology and experimental therapeutics, 2007, Volume: 321, Issue:3

    We have previously shown that the endocannabinoid anandamide and its metabolically stable analog (R)-methanandamide produce vasorelaxation in rabbit aortic ring preparations in an endothelium-dependent manner that could not be mimicked by other CB(1) cannabinoid receptor agonists (Am J Physiol 282: H2046-H2054, 2002). Here, we show that (R)-methanandamide and abnormal cannabidiol stimulated nitric oxide (NO) production in rabbit aortic endothelial cells (RAEC) in a dose-dependent manner but that other CB(1) and CB(2) receptor agonists, such as cis-3R-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4R-3(3-hydroxypropyl)-1R-cyclohexanol (CP55940) and (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo-[1,2,3-d,e]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone (WIN55212-2), failed to do so. CB(1) antagonists rimonabant [also known as SR141716; N-piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide] and 6-methoxy-2-(4-methoxyphenyl)benzo[b]-thien-3-yl][4-cyanophenyl]methanone (LY320135) and CB(2) antagonist N-[(1S)-endo-1,3,3,-trimethylbicyclo[2.2.1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) failed to block (R)-methanandamide-mediated NO production in RAEC. However, anandamide receptor antagonist (-)-4-(3-3,4-trans-p-menthadien-(1,8)-yl)-orcinol (O-1918) blocked (R)-methanandamide-mediated NO production in RAEC. Reverse transcriptase-polymerase chain reaction and Western blot analyses failed to detect the CB(1) receptor in RAEC, making this a good model to study non-CB(1) responses to anandamide. (R)-Methanandamide produced endothelial nitric-oxide synthase (eNOS) phosphorylation via the activation of phosphoinositide 3-kinase-Akt signaling. Inhibition of G(i) signaling with pertussis toxin, or phosphatidylinositol 3-kinase activity with 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), resulted in a decrease in (R)-methanandamide-induced Akt phosphorylation and NO production. Results from this study suggest that in RAEC, (R)-methanandamide acts on a novel non-CB(1) and non-CB(2) anandamide receptor and signals through G(i) and phosphatidylinositol 3-kinase, leading to Akt activation, eNOS phosphorylation, and NO production.

    Topics: Animals; Arachidonic Acids; Benzofurans; Benzoxazines; Camphanes; Cannabinoid Receptor Modulators; Cells, Cultured; Chromones; Cyclohexanols; Dose-Response Relationship, Drug; Endocannabinoids; Endothelial Cells; Enzyme Inhibitors; GTP-Binding Protein alpha Subunits, Gi-Go; Morpholines; Naphthalenes; Nitric Oxide; Pertussis Toxin; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Piperidines; Polyunsaturated Alkamides; Proto-Oncogene Proteins c-akt; Pyrazoles; Rabbits; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Resorcinols; Rimonabant; Signal Transduction

2007