ly-303070 has been researched along with cyclothiazide* in 4 studies
4 other study(ies) available for ly-303070 and cyclothiazide
Article | Year |
---|---|
Regulation of spontaneous inhibitory synaptic transmission by endogenous glutamate via non-NMDA receptors in cultured rat hippocampal neurons.
The regulation of gamma-aminobutyric acid (GABA)-mediated spontaneous inhibitory synaptic transmission by endogenously released glutamate was studied in cultured rat hippocampal neurons. After 7 days in vitro (DIV), both spontaneous excitatory postsynaptic currents (sEPSCs) and spontaneous inhibitory postsynaptic currents (sIPSCs) could be detected. After 15 DIV, most postsynaptic spontaneous currents occurred as sEPSC/sIPSC sequences when recorded at a holding voltage of -30 mV. In the presence of the glutamate alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subtype antagonist LY303070, both the frequency and amplitude of sIPSC were strongly and reversibly reduced. The N-methyl-D-aspartate (NMDA) receptor antagonist, 2-amino-5-phosphonopentanoic acid (AP5), had no effect on sIPSC while cyclothiazide strongly increased sIPSC frequency. Under blockade of AMPA receptors, the kainate- and GluR5-selective kainate receptor agonists, (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid) (ATPA) and (S)-5-iodowillardiine (5IWill), induced a large enhancement of the frequency of small-amplitude sIPSC which was blocked by the non-NMDA receptor antagonist, 2,3-dihydro-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX). All of these effects were sensitive to tetrodotoxin (TTX). In the presence of LY303070 and TTX, kainate could induce a small inward current while GluR5 agonists had no effect. In the presence of NMDA and AMPA receptor antagonists, the glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (t-PDC) could restore sIPSC. When NBQX was used as an AMPA antagonist, the stimulatory effect of t-PDC was blocked while the group I metabotropic glutamate agonist, 3,5-dihydroxyphenylglycine (DHPG), induced a strong enhancement of sIPSC. Therefore, both AMPA and kainate receptors can regulate inhibitory synaptic transmission in cultured hippocampal neurons, the former by tonic activation, the latter when the glutamate concentration is increased by impairing glutonate uptake. Topics: Animals; Antihypertensive Agents; Benzodiazepines; Benzothiadiazines; Cells, Cultured; Embryo, Mammalian; Excitatory Amino Acid Antagonists; Female; gamma-Aminobutyric Acid; Glutamic Acid; Hippocampus; Pregnancy; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, GABA; Receptors, Kainic Acid; Synaptic Transmission; Tetrodotoxin | 2001 |
Negative allosteric modulators of AMPA-preferring receptors inhibit [(3)H]GABA release in rat striatum.
The effect of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), a selective glutamate receptor agonist, on the release of previously incorporated [(3)H]GABA was examined in superfused striatal slices of the rat. The slices were loaded with [(3)H]GABA in the presence of beta-alanine (1 mM) and superfused with Krebs-bicarbonate buffer containing nipecotic acid (0.1 mM) and aminooxyacetic acid (0.1 mM) to inhibit GABA uptake and metabolism. AMPA (0.01 to 3 mM) increased basal [(3)H]GABA outflow and nipecotic acid potentiated this effect. The [(3)H]GABA releasing effect of AMPA was an external Ca(2+)-dependent process in the absence but not in the presence of nipecotic acid. Cyclothiazide (0.03 mM), a positive modulator of AMPA receptors, failed to evoke [(3)H]GABA release by itself, but it dose-dependently potentiated the [(3)H]GABA releasing effect of AMPA. The AMPA (0.3 mM)-induced [(3)H]GABA release was antagonized by NBQX (0.01 mM) in a competitive fashion (pA(2) 5.08). The negative modulator of AMPA receptors, GYKI-53784 (0.01 mM) reversed the AMPA-induced [(3)H]GABA release by a non-competitive manner (pD'(2) 5.44). GYKI-53784 (0. 01-0.1 mM) also decreased striatal [(3)H]GABA outflow on its own right, this effect was stereoselective and was not influenced by concomitant administration of 0.03 mM cyclothiazide. GYKI-52466 (0. 03-0.3 mM), another negative modulator at AMPA receptors, also inhibited basal [(3)H]GABA efflux whereas NBQX (0.1 mM) by itself was ineffective in alteration of [(3)H]GABA outflow. The present data indicate that AMPA evokes GABA release from the vesicular pool in neostriatal GABAergic neurons. They also confirm that multiple interactions may exist between the agonist binding sites and the positive and negative modulatory sites but no such interaction was detected between the positive and negative allosteric modulators. Since GYKI-53784, but not NBQX, inhibited [(3)H]GABA release by itself, AMPA receptors located on striatal GABAergic neurons may be in sensitized state and phasically controlled by endogenous glutamate. It is also postulated that these AMPA receptors are located extrasynaptically on GABAergic striatal neurons. Topics: Allosteric Site; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Anti-Anxiety Agents; Benzodiazepines; Benzothiadiazines; Corpus Striatum; Drug Synergism; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; In Vitro Techniques; Male; Rats; Rats, Sprague-Dawley; Receptors, AMPA | 2000 |
Differential modulation of the GYKI 53784-induced inhibition of AMPA currents by various AMPA-positive modulators in cerebellar Purkinje cells.
The effects of various (S)-alpha-amino-3-hydroxy-5-methyl-4-izoxazole-propionate (AMPA) receptor modulators on AMPA-induced whole-cell currents were compared in isolated rat cerebellar Purkinje cells. The positive modulators, aniracetam, cyclothiazide, 1-(1, 3-benzodioxol-5-ylcarbonyl)-piperidine (1-BCP), and 1-(quinoxaline-6-ylcarbonyl)-piperidine (BDP-12), dose-dependently potentiated the steady-state component of AMPA currents. The negative modulator, (-)1-(4-aminophenyl)-4-methyl-7, 8-methylenedioxy-4,5-dihydro-3-methylcarbamoyl-2,3-benzodiazepine (GYKI 53784), dose-dependently suppressed AMPA responses. Its concentration-response curve was shifted to the right in a parallel fashion by all positive modulators, indicating a competitive type of interaction. However, the relative potencies of the positive modulators were different with regard to the enhancement of AMPA responses and the reversal of GYKI 53784-induced inhibition, respectively. It is supposed that positive modulators act at multiple allosteric sites and that they interact with GYKI 53784 at only one of these sites. Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Benzodiazepines; Benzothiadiazines; Cells, Cultured; Cerebellum; Dioxoles; Dose-Response Relationship, Drug; Drug Synergism; Excitatory Amino Acid Antagonists; Membrane Potentials; Piperidines; Purkinje Cells; Pyrrolidinones; Rats; Receptors, AMPA | 2000 |
Role of desensitization of AMPA receptors on the neuronal viability and on the [Ca2+]i changes in cultured rat hippocampal neurons.
We investigated the role of desensitization of alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) receptors on the neurotoxicity and on the [Ca2+]i changes induced by kainate or by AMPA in cultured rat hippocampal neurons. The neuronal viability was evaluated either by the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, or by analysis of cell morphology. Short-term exposure of the neurons to kainate or AMPA (30 min) was not toxic, but the exposure for 24 h to the excitotoxic drugs caused a concentration-dependent neurotoxic effect which was prevented by LY 303070, a noncompetitive AMPA receptor antagonist. In the presence of cyclothiazide (CTZ), kainate or AMPA was toxic (30 min exposure), or the toxic effect was significantly enhanced (24 h exposure), but in this case LY 303070 did not completely protect the cells against kainate-induced toxicity. The alterations in the [Ca2+]i caused by kainate or AMPA showed a great cell-to-cell variability. LY 303070 completely or partially inhibited the responses stimulated by kainate. CTZ differentially affected the responses evoked by kainate or AMPA. In the majority of hippocampal neurons, CTZ did not potentiate, or only slightly potentiated, the kainate-stimulated responses but in 11% of neurons there was a great potentiation. In AMPA-stimulated neurons, the responses were slightly or greatly potentiated in the majority of neurons, but not in all of them. The results show that AMPA and kainate may be toxic, depending on the time of exposure and on the blockade of the desensitization of the AMPA receptors. Overall, our results clearly show that there exist different populations of hippocampal neurons with different sensitivities to kainate, AMPA, CTZ and LY 303070. Moreover, the effects of CTZ on both [Ca2+]i alterations and neurotoxicity are not fully correlated. Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Antihypertensive Agents; Benzodiazepines; Benzothiadiazines; Calcium; Cell Survival; Cells, Cultured; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Fetus; Hippocampus; Kainic Acid; Neurons; Neuroprotective Agents; Rats; Rats, Wistar; Receptors, AMPA | 2000 |