ly-146032 has been researched along with telavancin* in 9 studies
1 trial(s) available for ly-146032 and telavancin
Article | Year |
---|---|
Intrapulmonary distribution of intravenous telavancin in healthy subjects and effect of pulmonary surfactant on in vitro activities of telavancin and other antibiotics.
Steady-state concentrations of telavancin, a novel, bactericidal lipoglycopeptide, were determined in the plasma, pulmonary epithelial lining fluid (ELF), and alveolar macrophages (AMs) of 20 healthy subjects. Telavancin at 10 mg of drug/kg of body weight/day was administered as a 1-h intravenous infusion on three successive days, with bronchoalveolar lavage performed on five subjects, each at 4, 8, 12, and 24 h after the last dose. Plasma samples were collected before the first and third infusions and at 1, 2, 3, 4, 8, 12, and 24 h after the third infusion. The plasma telavancin concentration-time profile was as reported previously. Telavancin (mean +/- standard deviation) penetrated well into ELF (3.73 +/- 1.28 microg/ml at 8 h and 0.89 +/- 1.03 microg/ml at 24 h) and extensively into AMs (19.0 +/- 16.8 microg/ml at 8 h, 45.0 +/- 22.4 microg/ml at 12 h, and 42.0 +/- 31.4 microg/ml at 24 h). Mean concentrations in AMs and plasma at 12 h were 45.0 microg/ml and 22.9 microg/ml (mean AM/plasma ratio, 1.93), respectively, and at 24 h were 42.0 microg/ml and 7.28 microg/ml (mean AM/plasma ratio, 6.67), respectively. Over the entire dosing interval, telavancin was present in ELF and AMs at concentrations up to 8-fold and 85-fold, respectively, above its MIC 90 for methicillin-resistant Staphylococcus aureus (0.5 microg/ml). Pulmonary surfactant did not affect telavancin's in vitro antibacterial activity. Telavancin was well tolerated. These results support the proposal for further clinical evaluation of telavancin for treating gram-positive respiratory infections. Topics: Adult; Aminoglycosides; Anti-Bacterial Agents; Bronchoalveolar Lavage Fluid; Bronchoscopy; Female; Humans; Injections, Intravenous; Lipoglycopeptides; Lung; Macrophages, Alveolar; Male; Methicillin Resistance; Microbial Sensitivity Tests; Pulmonary Surfactants; Staphylococcus aureus; Streptococcus pneumoniae; Treatment Outcome | 2008 |
8 other study(ies) available for ly-146032 and telavancin
Article | Year |
---|---|
Flow cytometry as a tool to determine the effects of cell wall-active antibiotics on vancomycin-susceptible and -resistant Enterococcus faecalis strains.
Flow cytometry and confocal microscopy were used to study the effects of vancomycin, daptomycin, telavancin, and PA1409, a new investigational vancomyquine, on the morphology, membrane potential, and permeability of glycopeptide-susceptible and -resistant Enterococcus faecalis strains. Daptomycin exerted the most pronounced effects on bacterial size and bacterial permeability against susceptible and resistant strains. Topics: Aminoglycosides; Anti-Bacterial Agents; Daptomycin; Enterococcus faecalis; Flow Cytometry; Lipoglycopeptides; Microscopy, Confocal; Vancomycin | 2011 |
In vitro activity of telavancin against a contemporary worldwide collection of Staphylococcus aureus isolates.
The activity of telavancin and comparators was assessed against a contemporary (2007 and 2008) global collection of 10,000 isolates of Staphylococcus aureus. Telavancin was very active against methicillin-susceptible and -resistant S. aureus (MSSA and MRSA, respectively; MIC(50/90) for both, 0.12/0.25 microg/ml; 100.0% susceptible). This agent was 2-, 4-, and 8-fold more potent than daptomycin (MIC(90), 0.5 microg/ml), vancomycin or quinupristin-dalfopristin (MIC(90), 1 microg/ml), and linezolid (MIC(90), 2 microg/ml) against MRSA, respectively. These data show a potent activity of telavancin tested against a current global collection of S. aureus. Topics: Acetamides; Aminoglycosides; Anti-Bacterial Agents; Daptomycin; Drug Resistance, Bacterial; Humans; In Vitro Techniques; Linezolid; Lipoglycopeptides; Methicillin Resistance; Methicillin-Resistant Staphylococcus aureus; Microbial Sensitivity Tests; Oxazolidinones; Staphylococcal Infections; Staphylococcus aureus; Vancomycin; Virginiamycin | 2010 |
Comparative efficacies of human simulated exposures of telavancin and vancomycin against methicillin-resistant Staphylococcus aureus with a range of vancomycin MICs in a murine pneumonia model.
Telavancin displays potent in vitro and in vivo activity against methicillin-resistant Staphylococcus aureus (MRSA), including strains with reduced susceptibility to vancomycin. We compared the efficacies of telavancin and vancomycin against MRSA strains with vancomycin MICs of ≥1 μg/ml in a neutropenic murine lung infection model. Thirteen clinical MRSA isolates (7 vancomycin-susceptible, 2 vancomycin-heteroresistant [hVISA], and 4 vancomycin-intermediate [VISA] isolates) were tested after 24 h, and 7 isolates (1 hVISA and 4 VISA isolates) were tested after 48 h of exposure. Mice were administered subcutaneous doses of telavancin at 40 mg/kg of body weight every 12 h (q12h) or of vancomycin at 110 mg/kg q12h; doses were designed to simulate the area under the concentration-time curve for the free, unbound fraction of drug (fAUC) observed for humans given telavancin at 10 mg/kg q24h or vancomycin at 1 g q12h. Efficacy was expressed as the 24- or 48-h change in lung bacterial density from pretreatment counts. At dose initiation, the mean bacterial load was 6.16 ± 0.26 log(10) CFU/ml, which increased by averages of 1.26 ± 0.55 and 1.74 ± 0.68 log in untreated mice after 24 and 48 h, respectively. At both time points, similar CFU reductions were noted for telavancin and vancomycin against MRSA, with vancomycin MICs of ≤2 μg/ml. Both drugs were similarly efficacious after 24 and 48 h of treatment against the hVISA strains tested. Against VISA isolates, telavancin reduced bacterial burdens significantly more than vancomycin for 1 of 4 isolates after 24 h and for 3 of 4 isolates after 48 h. These data support the potential utility of telavancin for the treatment of MRSA pneumonia caused by pathogens with reduced susceptibility to vancomycin. Topics: Aminoglycosides; Animals; Anti-Bacterial Agents; Disease Models, Animal; Female; Lipoglycopeptides; Methicillin-Resistant Staphylococcus aureus; Mice; Mice, Inbred BALB C; Microbial Sensitivity Tests; Pneumonia; Staphylococcal Infections; Vancomycin | 2010 |
Telavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor lipid II.
Telavancin is an investigational lipoglycopeptide antibiotic currently being developed for the treatment of serious infections caused by gram-positive bacteria. The bactericidal action of telavancin results from a mechanism that combines the inhibition of cell wall synthesis and the disruption of membrane barrier function. The purpose of the present study was to further elucidate the mechanism by which telavancin interacts with the bacterial membrane. A flow cytometry assay with the diethyloxacarbocyanine dye DiOC(2)(3) was used to probe the membrane potential of actively growing Staphylococcus aureus cultures. Telavancin caused pronounced membrane depolarization that was both time and concentration dependent. Membrane depolarization was demonstrated against a reference S. aureus strain as well as phenotypically diverse isolates expressing clinically important methicillin-resistant (MRSA), vancomycin-intermediate (VISA), and heterogeneous VISA (hVISA) phenotypes. The cell wall precursor lipid II was shown to play an essential role in telavancin-induced depolarization. This was demonstrated both in competition binding experiments with exogenous D-Ala-D-Ala-containing ligand and in experiments with cells expressing altered levels of lipid II. Finally, monitoring of the optical density of S. aureus cultures exposed to telavancin showed that cell lysis does not occur during the time course in which membrane depolarization and bactericidal activity are observed. Taken together, these data indicate that telavancin's membrane mechanism requires interaction with lipid II, a high-affinity target that mediates binding to the bacterial membrane. The targeted interaction with lipid II and the consequent disruption of both peptidoglycan synthesis and membrane barrier function provide a mechanistic basis for the improved antibacterial properties of telavancin relative to those of vancomycin. Topics: Aminoglycosides; Anti-Bacterial Agents; Cell Wall; Flow Cytometry; Lipoglycopeptides; Membrane Potentials; Methicillin Resistance; Microbial Sensitivity Tests; Microscopy, Phase-Contrast; Staphylococcus aureus; Uridine Diphosphate N-Acetylmuramic Acid; Vancomycin | 2009 |
In vitro activities of telavancin and six comparator agents against anaerobic bacterial isolates.
The antimicrobial activities of telavancin and six comparators were evaluated against 460 isolates of anaerobic bacteria. Telavancin demonstrated excellent activity against gram-positive anaerobes (MIC90, 2 microg/ml) and was the most potent agent tested against Clostridium difficile (MIC90, 0.25 microg/ml). As expected, gram-negative isolates were not inhibited by telavancin. Topics: Aminoglycosides; Anti-Bacterial Agents; Bacteria, Anaerobic; Clostridioides difficile; Gram-Negative Bacteria; Gram-Positive Bacteria; Lipoglycopeptides; Microbial Sensitivity Tests | 2009 |
Comparative surveillance study of telavancin activity against recently collected gram-positive clinical isolates from across the United States.
Telavancin is an investigational, rapidly bactericidal lipoglycopeptide antibiotic that is being developed to treat serious infections caused by gram-positive bacteria. A baseline prospective surveillance study was conducted to assess telavancin activity, in comparison with other agents, against contemporary clinical isolates collected from 2004 to 2005 from across the United States. Nearly 4,000 isolates were collected, including staphylococci, enterococci, and streptococci (pneumococci, beta-hemolytic, and viridans). Telavancin had potent activity against Staphylococcus aureus and coagulase-negative staphylococci (MIC range, 0.03 to 1.0 microg/ml), independent of resistance to methicillin or to multiple agents. Telavancin activity was particularly potent against all streptococcal groups (MIC(90)s, 0.03 to 0.12 microg/ml). Telavancin had excellent activity against vancomycin-susceptible enterococci (MIC(90), 1 microg/ml) and was active against VanB strains of vancomycin-resistant enterococci (MIC(90), 2 microg/ml) but less active against VanA strains (MIC(90), 8 to 16 microg/ml). Telavancin also demonstrated activity against vancomycin-intermediate S. aureus and vancomycin-resistant S. aureus strains (MICs, 0.5 microg/ml to 1.0 microg/ml and 1.0 microg/ml to 4.0 microg/ml, respectively). These data may support the efficacy of telavancin for treatment of serious infections with a wide range of gram-positive organisms. Topics: Aminoglycosides; Anti-Bacterial Agents; Drug Resistance, Bacterial; Enterococcus; Gram-Positive Bacteria; Gram-Positive Bacterial Infections; Humans; Lipoglycopeptides; Microbial Sensitivity Tests; Prospective Studies; Staphylococcus aureus; Streptococcus; Streptococcus pneumoniae; United States | 2008 |
In vitro activity of telavancin against resistant gram-positive bacteria.
The in vitro activity of telavancin was tested against 743 predominantly antimicrobial-resistant, gram-positive isolates. Telavancin was highly active against methicillin-resistant staphylococci (MIC(90), 0.5 to 1 microg/ml), streptococci (all MICs, < or =0.12 microg/ml), and VanB-type enterococci (all MICs, < or =2 microg/ml). Time-kill studies demonstrated the potent bactericidal activity of telavancin. Topics: Aminoglycosides; Anti-Bacterial Agents; Drug Resistance, Bacterial; Enterococcus; Gram-Positive Bacteria; Gram-Positive Bacterial Infections; Humans; In Vitro Techniques; Lipoglycopeptides; Methicillin Resistance; Microbial Sensitivity Tests; Staphylococcus; Streptococcus | 2008 |
In vitro activity of telavancin against gram-positive clinical isolates recently obtained in Europe.
The in vitro activity of telavancin was tested against 620 gram-positive isolates. For staphylococci, MICs at which 50 and 90% of isolates were inhibited (MIC(50) and MIC(90)) were both 0.25 microg/ml, irrespective of methicillin resistance. MIC(50) and MIC(90) were 0.25 and 0.5 microg/ml for vancomycin-susceptible enterococci and 1 and 2 microg/ml for vancomycin-resistant enterococci, respectively. Streptococcus pneumoniae, group A and B beta-hemolytic streptococci, and viridans streptococci were inhibited by < or =0.12 microg/ml. Topics: Aminoglycosides; Anti-Bacterial Agents; Drug Resistance, Multiple, Bacterial; Europe; Gram-Positive Bacteria; Gram-Positive Bacterial Infections; Humans; Lipoglycopeptides; Methicillin Resistance; Microbial Sensitivity Tests; Staphylococcus aureus; Streptococcus agalactiae; Streptococcus pyogenes; Vancomycin Resistance; Viridans Streptococci | 2007 |