lumefantrine and desethylamodiaquine

lumefantrine has been researched along with desethylamodiaquine* in 8 studies

Trials

2 trial(s) available for lumefantrine and desethylamodiaquine

ArticleYear
In vivo/ex vivo efficacy of artemether-lumefantrine and artesunate-amodiaquine as first-line treatment for uncomplicated falciparum malaria in children: an open label randomized controlled trial in Burkina Faso.
    Malaria journal, 2020, Jan-06, Volume: 19, Issue:1

    Artemisinin-based combination therapy (ACT) is recommended to improve malaria treatment efficacy and limit drug-resistant parasites selection in malaria endemic areas. 5 years after they were adopted, the efficacy and safety of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ), the first-line treatments for uncomplicated malaria were assessed in Burkina Faso.. In total, 440 children with uncomplicated Plasmodium falciparum malaria were randomized to receive either AL or ASAQ for 3 days and were followed up weekly for 42 days. Blood samples were collected to investigate the ex vivo susceptibility of P. falciparum isolates to lumefantrine, dihydroartemisinin (the active metabolite of artemisinin derivatives) and monodesethylamodiaquine (the active metabolite of amodiaquine). The modified isotopic micro test technique was used to determine the 50% inhibitory concentration (IC50) values. Primary endpoints were the risks of treatment failure at days 42.. Out of the 440 patients enrolled, 420 (95.5%) completed the 42 days follow up. The results showed a significantly higher PCR unadjusted cure rate in ASAQ arm (71.0%) than that in the AL arm (49.8%) on day 42, and this trend was similar after correction by PCR, with ASAQ performing better (98.1%) than AL (91.1%). Overall adverse events incidence was low and not significantly different between the two treatment arms. Ex vivo results showed that 6.4% P. falciparum isolates were resistant to monodesthylamodiaquine. The coupled in vivo/ex vivo analysis showed increased IC50 values for lumefantrine and monodesethylamodiaquine at day of recurrent parasitaemia compared to baseline values while for artesunate, IC50 values remained stable at baseline and after treatment failure (p > 0.05).. These findings provide substantial evidence that AL and ASAQ are highly efficacious for the treatment of uncomplicated malaria in children in Burkina Faso. However, the result of P. falciparum susceptibility to the partner drugs advocates the need to regularly replicate such surveillance studies. This would be particularly indicated when amodiaquine is associated in seasonal malaria chemoprophylaxis (SMC) mass drug administration in children under 5 years in Burkina Faso. Trial registration clinicaltrials, NCT00808951. Registered 05 December 2008,https://clinicaltrials.gov/ct2/show/NCT00808951?cond=NCT00808951&rank=1.

    Topics: Adolescent; Amodiaquine; Antimalarials; Artemether, Lumefantrine Drug Combination; Artemisinins; Artesunate; Burkina Faso; Child; Child, Preschool; Drug Combinations; Drug Therapy, Combination; Female; Humans; Infant; Inhibitory Concentration 50; Lumefantrine; Malaria, Falciparum; Male; Mass Drug Administration; Plasmodium falciparum; Treatment Failure; Treatment Outcome

2020
Changing Antimalarial Drug Sensitivities in Uganda.
    Antimicrobial agents and chemotherapy, 2017, Volume: 61, Issue:12

    Dihydroartemisinin-piperaquine (DP) has demonstrated excellent efficacy for the treatment and prevention of malaria in Uganda. However, resistance to both components of this regimen has emerged in Southeast Asia. The efficacy of artemether-lumefantrine, the first-line regimen to treat malaria in Uganda, has also been excellent, but continued pressure may select for parasites with decreased sensitivity to lumefantrine. To gain insight into current drug sensitivity patterns,

    Topics: Adolescent; Amodiaquine; Antimalarials; Artemisinins; Aspartic Acid Endopeptidases; Child; Child, Preschool; Chloroquine; Drug Resistance; Ethanolamines; Female; Fluorenes; Gene Expression; Humans; Infant; Inhibitory Concentration 50; Lumefantrine; Malaria, Falciparum; Male; Mefloquine; Membrane Transport Proteins; Multidrug Resistance-Associated Proteins; Mutation; Parasitic Sensitivity Tests; Plasmodium falciparum; Protozoan Proteins; Quinolines; Uganda; Young Adult

2017

Other Studies

6 other study(ies) available for lumefantrine and desethylamodiaquine

ArticleYear
Association between Polymorphisms in the Pf
    Antimicrobial agents and chemotherapy, 2017, Volume: 61, Issue:3

    Polymorphisms and the overexpression of transporter genes, especially of the ATP-binding cassette superfamily, have been involved in antimalarial drug resistance. The objective of this study was to use 77 Senegalese

    Topics: Amodiaquine; Antimalarials; Artemisinins; Artesunate; Asparagine; ATP-Binding Cassette Transporters; Chloroquine; Doxycycline; Drug Resistance; Ethanolamines; Fluorenes; Gene Expression; Humans; Inhibitory Concentration 50; Lumefantrine; Malaria, Falciparum; Mefloquine; Naphthyridines; Plasmodium falciparum; Polymorphism, Genetic; Protein Isoforms; Protozoan Proteins; Quinine; Quinolines; Repetitive Sequences, Amino Acid; Senegal

2017
Impact of antimalarial treatment and chemoprevention on the drug sensitivity of malaria parasites isolated from ugandan children.
    Antimicrobial agents and chemotherapy, 2015, Volume: 59, Issue:6

    Changing treatment practices may be selecting for changes in the drug sensitivity of malaria parasites. We characterized ex vivo drug sensitivity and parasite polymorphisms associated with sensitivity in 459 Plasmodium falciparum samples obtained from subjects enrolled in two clinical trials in Tororo, Uganda, from 2010 to 2013. Sensitivities to chloroquine and monodesethylamodiaquine varied widely; sensitivities to quinine, dihydroartemisinin, lumefantrine, and piperaquine were generally good. Associations between ex vivo drug sensitivity and parasite polymorphisms included decreased chloroquine and monodesethylamodiaquine sensitivity and increased lumefantrine and piperaquine sensitivity with pfcrt 76T, as well as increased lumefantrine sensitivity with pfmdr1 86Y, Y184, and 1246Y. Over time, ex vivo sensitivity decreased for lumefantrine and piperaquine and increased for chloroquine, the prevalences of pfcrt K76 and pfmdr1 N86 and D1246 increased, and the prevalences of pfdhfr and pfdhps polymorphisms associated with antifolate resistance were unchanged. In recurrent infections, recent prior treatment with artemether-lumefantrine was associated with decreased ex vivo lumefantrine sensitivity and increased prevalence of pfcrt K76 and pfmdr1 N86, 184F, and D1246. In children assigned chemoprevention with monthly dihydroartemisinin-piperaquine with documented circulating piperaquine, breakthrough infections had increased the prevalence of pfmdr1 86Y and 1246Y compared to untreated controls. The noted impacts of therapy and chemoprevention on parasite polymorphisms remained significant in multivariate analysis correcting for calendar time. Overall, changes in parasite sensitivity were consistent with altered selective pressures due to changing treatment practices in Uganda. These changes may threaten the antimalarial treatment and preventive efficacies of artemether-lumefantrine and dihydroartemisinin-piperaquine, respectively.

    Topics: Amodiaquine; Antimalarials; Artemisinins; Child, Preschool; Chloroquine; Clinical Trials as Topic; Ethanolamines; Fluorenes; Humans; Infant; Lumefantrine; Membrane Transport Proteins; Multidrug Resistance-Associated Proteins; Parasitic Sensitivity Tests; Plasmodium falciparum; Polymorphism, Genetic; Protozoan Proteins; Quinine; Quinolines; Uganda

2015
Plasmodium falciparum Polymorphisms associated with ex vivo drug susceptibility and clinical effectiveness of artemisinin-based combination therapies in Benin.
    Antimicrobial agents and chemotherapy, 2014, Volume: 58, Issue:1

    Artemisinin-based combination therapies (ACTs) are the main option to treat malaria, and their efficacy and susceptibility must be closely monitored to avoid resistance. We assessed the association of Plasmodium falciparum polymorphisms and ex vivo drug susceptibility with clinical effectiveness. Patients enrolled in an effectiveness trial comparing artemether-lumefantrine (n = 96), fixed-dose artesunate-amodiaquine (n = 96), and sulfadoxine-pyrimethamine (n = 48) for the treatment of uncomplicated malaria 2007 in Benin were assessed. pfcrt, pfmdr1, pfmrp1, pfdhfr, and pfdhps polymorphisms were analyzed pretreatment and in recurrent infections. Drug susceptibility was determined in fresh baseline isolates by Plasmodium lactate dehydrogenase enzyme-linked immunosorbent assay (ELISA). A majority had 50% inhibitory concentration (IC50) estimates (the concentration required for 50% growth inhibition) lower than those of the 3D7 reference clone for desethylamodiaquine, lumefantrine, mefloquine, and quinine and was considered to be susceptible, while dihydroartemisinin and pyrimethamine IC50s were higher. No association was found between susceptibility to the ACT compounds and treatment outcome. Selection was observed for the pfmdr1 N86 allele in artemether-lumefantrine recrudescences (recurring infections) (4/7 [57.1%] versus 36/195 [18.5%]), and of the opposite allele, 86Y, in artesunate-amodiaquine reinfections (new infections) (20/22 [90.9%] versus 137/195 [70.3%]) compared to baseline infections. The importance of pfmdr1 N86 in lumefantrine tolerance was emphasized by its association with elevated lumefantrine IC50s. Genetic linkage between N86 and Y184 was observed, which together with the low frequency of 1246Y may explain regional differences in selection of pfmdr1 loci. Selection of opposite alleles in artemether-lumefantrine and artesunate-amodiaquine recurrent infections supports the strategy of multiple first-line treatment. Surveillance based on clinical, ex vivo, molecular, and pharmacological data is warranted.

    Topics: Amodiaquine; Antimalarials; Artemisinins; Drug Combinations; Ethanolamines; Female; Fluorenes; Humans; Inhibitory Concentration 50; Lumefantrine; Male; Mefloquine; Membrane Transport Proteins; Multidrug Resistance-Associated Proteins; Plasmodium falciparum; Polymorphism, Single Nucleotide; Protozoan Proteins; Pyrimethamine; Quinine; Sulfadoxine

2014
Role of Pfmdr1 in in vitro Plasmodium falciparum susceptibility to chloroquine, quinine, monodesethylamodiaquine, mefloquine, lumefantrine, and dihydroartemisinin.
    Antimicrobial agents and chemotherapy, 2014, Volume: 58, Issue:12

    The involvement of Pfmdr1 (Plasmodium falciparum multidrug resistance 1) polymorphisms in antimalarial drug resistance is still debated. Here, we evaluate the association between polymorphisms in Pfmdr1 (N86Y, Y184F, S1034C, N1042D, and D1246Y) and Pfcrt (K76T) and in vitro responses to chloroquine (CQ), mefloquine (MQ), lumefantrine (LMF), quinine (QN), monodesethylamodiaquine (MDAQ), and dihydroartemisinin (DHA) in 174 Plasmodium falciparum isolates from Dakar, Senegal. The Pfmdr1 86Y mutation was identified in 14.9% of the samples, and the 184F mutation was identified in 71.8% of the isolates. No 1034C, 1042N, or 1246Y mutations were detected. The Pfmdr1 86Y mutation was significantly associated with increased susceptibility to MDAQ (P = 0.0023), LMF (P = 0.0001), DHA (P = 0.0387), and MQ (P = 0.00002). The N86Y mutation was not associated with CQ (P = 0.214) or QN (P = 0.287) responses. The Pfmdr1 184F mutation was not associated with various susceptibility responses to the 6 antimalarial drugs (P = 0.168 for CQ, 0.778 for MDAQ, 0.324 for LMF, 0.961 for DHA, 0.084 for QN, and 0.298 for MQ). The Pfmdr1 86Y-Y184 haplotype was significantly associated with increased susceptibility to MDAQ (P = 0.0136), LMF (P = 0.0019), and MQ (P = 0.0001). The additional Pfmdr1 86Y mutation increased significantly the in vitro susceptibility to MDAQ (P < 0.0001), LMF (P < 0.0001), MQ (P < 0.0001), and QN (P = 0.0026) in wild-type Pfcrt K76 parasites. The additional Pfmdr1 86Y mutation significantly increased the in vitro susceptibility to CQ (P = 0.0179) in Pfcrt 76T CQ-resistant parasites.

    Topics: Adult; Amodiaquine; Antimalarials; Artemisinins; Biological Transport; Child; Chloroquine; Drug Resistance; Erythrocytes; Ethanolamines; Female; Fluorenes; Gene Expression; Haplotypes; Humans; Inhibitory Concentration 50; Lumefantrine; Malaria, Falciparum; Male; Mefloquine; Multidrug Resistance-Associated Proteins; Parasitic Sensitivity Tests; Plasmodium falciparum; Polymorphism, Single Nucleotide; Quinine; Senegal

2014
In vitro activity of Proveblue (methylene blue) on Plasmodium falciparum strains resistant to standard antimalarial drugs.
    Antimicrobial agents and chemotherapy, 2011, Volume: 55, Issue:5

    The geometric mean 50% inhibitory concentration (IC50) for Proveblue, a methylene blue complying with the European Pharmacopoeia, was more active on 23 P. falciparum strains than chloroquine, quinine, mefloquine, monodesethylamodiaquine, and lumefantrine. We did not find significant associations between the Proveblue IC50 and polymorphisms in the pfcrt, pfmdr1, pfmdr2, pfmrp, and pfnhe-1 genes or the copy numbers of the pfmdr1 and pfmdr2 genes, all of which are involved in antimalarial resistance.

    Topics: Amodiaquine; Antimalarials; Chloroquine; Ethanolamines; Fluorenes; Inhibitory Concentration 50; Lumefantrine; Mefloquine; Methylene Blue; Plasmodium falciparum; Polymorphism, Genetic; Protozoan Proteins; Quinine

2011
Quantitative assessment of Plasmodium falciparum sexual development reveals potent transmission-blocking activity by methylene blue.
    Proceedings of the National Academy of Sciences of the United States of America, 2011, Nov-22, Volume: 108, Issue:47

    Clinical studies and mathematical models predict that, to achieve malaria elimination, combination therapies will need to incorporate drugs that block the transmission of Plasmodium falciparum sexual stage parasites to mosquito vectors. Efforts to measure the activity of existing antimalarials on intraerythrocytic sexual stage gametocytes and identify transmission-blocking agents have, until now, been hindered by a lack of quantitative assays. Here, we report an experimental system using P. falciparum lines that stably express gametocyte-specific GFP-luciferase reporters, which enable the assessment of dose- and time-dependent drug action on gametocyte maturation and transmission. These studies reveal activity of the first-line antimalarial dihydroartemisinin and the partner drugs lumefantrine and pyronaridine against early gametocyte stages, along with moderate inhibition of mature gametocyte transmission to Anopheles mosquitoes. The other partner agents monodesethyl-amodiaquine and piperaquine showed activity only against immature gametocytes. Our data also identify methylene blue as a potent inhibitor of gametocyte development across all stages. This thiazine dye almost fully abolishes P. falciparum transmission to mosquitoes at concentrations readily achievable in humans, highlighting the potential of this chemical class to reduce the spread of malaria.

    Topics: Amodiaquine; Animals; Anopheles; Antimalarials; Artemisinins; Blotting, Southern; Dose-Response Relationship, Drug; Ethanolamines; Fluorenes; Genetic Vectors; Germ Cells, Plant; Green Fluorescent Proteins; Luciferases; Lumefantrine; Malaria; Methylene Blue; Naphthyridines; Plasmodium falciparum; Quinolines; Sexual Development

2011