loxoribine has been researched along with resiquimod* in 8 studies
8 other study(ies) available for loxoribine and resiquimod
Article | Year |
---|---|
TLR7 Agonists Display Potent Antiviral Effects against Norovirus Infection via Innate Stimulation.
Norovirus infections are a significant health and economic burden globally, accounting for hundreds of millions of cases of acute gastroenteritis every year. In the absence of an approved norovirus vaccine, there is an urgent need to develop antivirals to treat chronic infections and provide prophylactic therapy to limit viral spread during epidemics and pandemics. Toll-like receptor (TLR) agonists have been explored widely for their antiviral potential, and several are progressing through clinical trials for the treatment of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) and as adjuvants for norovirus viruslike particle (VLP) vaccines. However, norovirus therapies in development are largely direct-acting antivirals (DAAs) with fewer compounds that target the host. Our aim was to assess the antiviral potential of TLR7 agonist immunomodulators on norovirus infection using the murine norovirus (MNV) and human Norwalk replicon models. TLR7 agonists R-848, Gardiquimod, GS-9620, R-837, and loxoribine were screened using a plaque reduction assay, and each displayed inhibition of MNV replication (50% effective concentrations [EC Topics: Aminoquinolines; Animals; Antiviral Agents; Caliciviridae Infections; Cell Line; Guanosine; Humans; Imidazoles; Imiquimod; Mice; Pteridines; RAW 264.7 Cells; Toll-Like Receptor 7; Virus Replication | 2018 |
The toll-like receptor agonist imiquimod is active against prions.
Using a yeast-based assay, a previously unsuspected antiprion activity was found for imiquimod (IQ), a potent Toll-like receptor 7 (TLR7) agonist already used for clinical applications. The antiprion activity of IQ was first detected against yeast prions [PSI (+) ] and [URE3], and then against mammalian prion both ex vivo in a cell-based assay and in vivo in a transgenic mouse model for prion diseases. In order to facilitate structure-activity relationship studies, we conducted a new synthetic pathway which provides a more efficient means of producing new IQ chemical derivatives, the activity of which was tested against both yeast and mammalian prions. The comparable antiprion activity of IQ and its chemical derivatives in the above life forms further emphasizes the conservation of prion controlling mechanisms throughout evolution. Interestingly, this study also demonstrated that the antiprion activity of IQ and IQ-derived compounds is independent from their ability to stimulate TLRs. Furthermore, we found that IQ and its active chemical derivatives inhibit the protein folding activity of the ribosome (PFAR) in vitro. Topics: Aminoquinolines; Animals; Cell Line; Drug Evaluation, Preclinical; Glutathione Peroxidase; Guanosine; Humans; Imidazoles; Imiquimod; Membrane Glycoproteins; Mice; Peptide Termination Factors; Prion Diseases; Prions; Protein Folding; PrPSc Proteins; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Structure-Activity Relationship; Toll-Like Receptor 7; Toll-Like Receptor 8 | 2013 |
The TLR7/8 ligand resiquimod targets monocyte-derived dendritic cell differentiation via TLR8 and augments functional dendritic cell generation.
Imidazoquinolone compounds, such as resiquimod are Toll-like receptor (TLR) 7/8 ligands representing novel immune response modifiers undergoing clinical testing. Resiquimod has been reported to modulate conventional human monocyte-derived DC (moDC) differentiation, but the role of TLR7 and TLR8 is unclear. We directly dissected the TLR7- and TLR8-dependency by employing selective TLR7 ligands and resiquimod-coculture experiments with inhibitory oligonucleotides (iODN) suppressing TLR7, TLR7+8 or TLR7+8+9. Selective TLR7 ligands did not affect conventional moDC differentiation as analyzed by CD14/CD1a expression. iODN experiments confirmed that resiquimod's effects during DC differentiation were antagonized only with TLR8 iODNs. Direct comparison of resiquimod DC with TLR7- and control-DC revealed significantly higher T-cell costimulatory molecule and MHC class II expression. Resiquimod DC promoted significantly stronger allogeneic T-cell proliferation and stronger naïve CD4(+) T-cell proliferation. These results indicate the relevance of TLR8 for human monocyte-derived DC differentiation and maturation and may be relevant for clinical trials employing resiquimod. Topics: Aminoquinolines; Base Sequence; Cell Differentiation; Cell Proliferation; Dendritic Cells; Guanosine; HEK293 Cells; HLA-D Antigens; Humans; Imidazoles; In Vitro Techniques; Interleukin-3 Receptor alpha Subunit; Ligands; Monocytes; Oligodeoxyribonucleotides, Antisense; T-Lymphocytes, Helper-Inducer; Toll-Like Receptor 7; Toll-Like Receptor 8; Toll-Like Receptor 9; Transfection | 2011 |
Natural and synthetic TLR7 ligands inhibit CpG-A- and CpG-C-oligodeoxynucleotide-induced IFN-alpha production.
Plasmacytoid dendritic cells (pDCs) are unique with respect to their capacity to produce unsurpassed amounts of IFN-alpha and coexpress TLR7 and TLR9, mediating IFN-alpha production. Although TLRs are critical receptors of innate immunity, little is known about the immunological effects of TLR7/TLR9 costimulation. We have analyzed the effects of TLR7/TLR9 costimulation on IFN-alpha production by leukocytes and pDCs. Our experiments revealed that both synthetic (resiquimod and loxoribine) and natural (ssRNA40) TLR7 ligands abrogate CpG-A- and CpG-C-oligodeoxynucleotide (ODN)-induced IFN-alpha production by human leukocytes. Because TLR7 ligands themselves represent important IFN-alpha inducers, we demonstrated that substimulatory TLR7 ligand concentrations significantly inhibited CpG-A-induced IFN-alpha. Delayed addition of TLR7 ligands still resulted in complete suppression of CpG-A-ODN-induced IFN-alpha production, suggesting that the inhibition is unlikely to be caused by a kinetic uptake advantage. Unlike for CpG-A and CpG-C, TLR7 ligands did not inhibit CpG-B-ODN-induced IFN-alpha production. Experiments with purified human pDCs demonstrated that the inhibitory effects of TLR7/TLR9 costimulation were mediated directly by pDCs. Suppression of IFN-alpha production was not related to increased cell death and was also detectable in enriched mouse pDCs. Analyses of pDCs suggested that the TLR7 signal regulates the outcome of TLR7 ligand/CpG-A-ODN costimulation and can either inhibit (IFN-alpha) or promote (IL-8/CD40) cytokine and surface marker expression. Our data reveal for the first time a strong inhibitory effect of TLR7 stimulation on IFN-alpha production induced by CpG-A- and CpG-C-ODNs. These findings provide novel insight into the effects of TLR7/TLR9 costimulation and may support the development of novel TLR9 inhibitors. Topics: Animals; CD40 Antigens; Dendritic Cells; Guanosine; Humans; Imidazoles; Interferon-alpha; Interleukin-8; Ligands; Mice; Oligodeoxyribonucleotides; Signal Transduction; Toll-Like Receptor 7; Toll-Like Receptor 9 | 2007 |
Modulating responsiveness of human TLR7 and 8 to small molecule ligands with T-rich phosphorothiate oligodeoxynucleotides.
Toll-like receptors (TLR) 7 and 8 are closely related members of the TLR family of pathogen-associated molecular pattern recognition receptors and have an important function in activation of innate immune responses upon viral infection. TLR7 can be activated selectively by the guanosine analogue loxoribine, whereas the imidazoquinoline derivative Resiquimod (R-848) activates both TLR7 and TLR8. We demonstrate that co-incubation of R-848 with thymidine homopolymer oligodeoxynucleotides (ODN) significantly increased activity of R-848 on TLR8-expressing HEK 293 cells, but abolished TLR7-mediated signaling. Similarly, the combination of loxoribine and thymidine ODN redirected the stimulatory effect of loxoribine away from TLR7, and toward TLR8. This alteration in ligand specificity was demonstrated both in TLR-transfected HEK cells, and also in human PBMC, with a corresponding change in cytokine production away from IFN-alpha secretion by TLR7-expressing plasmacytoid DC and toward IL-12, TNF-alpha and IFN-gamma secretion by TLR8-expressing monocytes and NK cells. These results demonstrate an unexpected plasticity in the ligand specificities of TLR7 and TLR8, and suggest a novel sequence-selective interaction between these receptors and synthetic phosphorothioate ODN. Topics: Cell Line; Cells, Cultured; Guanosine; Humans; Imidazoles; Leukocytes, Mononuclear; Ligands; Models, Immunological; Oligodeoxyribonucleotides; Thionucleotides; Toll-Like Receptor 7; Toll-Like Receptor 8 | 2006 |
Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes.
Toll-like receptors (TLRs) are important pattern recognition molecules that activate the nuclear factor (NF)-kappaB pathway leading to the production of antimicrobial immune mediators. As keratinocytes represent the first barrier against exogenous pathogens in human skin, we investigated their complete functional TLR1-10 expression profile. First, reverse transcription-polymerase chain reaction (PCR) analysis revealed a very similar pattern of TLR mRNA expression when comparing freshly isolated human epidermis and cultured primary human keratinocytes. Thus, further experiments were carried out with primary keratinocytes in comparison with the spontaneously immortalized human keratinocyte cell line HaCaT. The quantitative expression of TLR1-10 mRNA in real-time PCR of primary human keratinocytes and HaCaT cells was analysed. Both cell types constitutively expressed TLR2, TLR3, TLR5, and to a lesser extent TLR10. TLR4 was only found in HaCaT cells, TLR1 to a higher degree in primary keratinocytes. In line with this, LPS induced mRNA expression of CD14 and TLR4 only in HaCaT cells. After stimulation with various TLR ligands, the NF-kappaB-activated chemokine interleukin-8 (IL-8) was measured. In primary keratinocytes and HaCaT cells the TLR3 ligand poly (I:C) was the most potent stimulator of IL-8 secretion. The TLR ligands peptidoglycan, Pam3Cys and flagellin which bind to TLR2, TLR1/TLR2 heterodimer, and TLR5, respectively, also induced IL-8 secretion, whereas no IL-8 was induced by LPS, R-848, loxoribine and cytosine guanine dinucleotide-containing oligodeoxynucleotide. A corresponding pattern was found in the RelA NF-kappaB translocation assay after ligand stimulation of primary keratinocytes. These studies provide substantial evidence for a functional TLR expression and signalling profile of normal human keratinocytes contributing to the antimicrobial defence barrier of human skin. Topics: Biological Transport; Cell Culture Techniques; Cell Line, Transformed; Dendritic Cells; Epidermis; Gene Expression; Guanosine; Humans; Imidazoles; Interleukin-8; Keratinocytes; Ligands; Lipopolysaccharides; Membrane Glycoproteins; NF-kappa B; Receptors, Cell Surface; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stimulation, Chemical; Toll-Like Receptor 1; Toll-Like Receptor 10; Toll-Like Receptor 2; Toll-Like Receptor 3; Toll-Like Receptor 4; Toll-Like Receptor 5; Toll-Like Receptors | 2005 |
Identification and characterization of a functional, alternatively spliced Toll-like receptor 7 (TLR7) and genomic disruption of TLR8 in chickens.
Based upon the recognition of antiviral compounds and single stranded viral RNA the Toll-like receptors TLR7 and TLR8 are suggested to play a significant role in initiating antiviral immune responses. Here we report the molecular characterization of the chicken TLR7/8 loci which revealed an intact TLR7 gene and fragments of a TLR8-like gene with a 6-kilobase insertion containing chicken repeat 1 (CR1) retroviral-like insertion elements. The chicken TLR7 gene encodes a 1047-amino-acid protein with 62% identity to human TLR7 and a conserved pattern of predicted leucine-rich repeats. Highest levels of chicken TLR7 mRNA were detected in immune-related tissues and cells, especially the spleen, caecal, tonsil and splenic B cells. Alternative spliced forms of TLR7 mRNA were identified in chicken, mouse and human and expressed in similar tissues and cell types to the major form of chicken TLR7. The chicken TLR7+ HD11 cell line and fresh splenocytes produced elevated levels of interleukin-1beta (IL-1beta) mRNA after exposure to the agonists R848 and loxoribine. Interestingly, none of the TLR7 agonists stimulated increased type I interferon (IFN) mRNA whereas poly(I:C) (a TLR3 agonist) up-regulated both chicken IFN-alpha and chicken IFN-beta mRNA. In contrast, TLR7 agonists, particularly R848 and poly(U) stimulated up-regulation of chicken IL-1beta, and chicken IL-8 mRNAs more effectively than poly(I:C). Stimulation of chicken TLR7 with R848 was chloroquine sensitive, suggesting signalling within an endosomal compartment, as for mammalian TLR7. The deletion of TLR8 in galliforms, accompanied with the differential response after exposure to TLR7 agonists, offers insight into the evolution of vertebrate TLR function. Topics: Amino Acid Sequence; Animals; B-Lymphocytes; Cecum; Cell Line; Chickens; Conserved Sequence; Guanosine; Humans; Imidazoles; In Situ Hybridization, Fluorescence; Interferon Inducers; Interferon-alpha; Interferon-beta; Interleukin-1; Membrane Glycoproteins; Mice; Molecular Sequence Data; Palatine Tonsil; Poly I-C; Protein Folding; Receptors, Cell Surface; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sequence Alignment; Specific Pathogen-Free Organisms; Spleen; Stimulation, Chemical; Toll-Like Receptor 3; Toll-Like Receptor 7; Toll-Like Receptor 8; Toll-Like Receptors; Virus Diseases | 2005 |
The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily.
Loxoribine (7-allyl-7,8-dihydro-8-oxo-guanosine) acts as synthetic adjuvant in anti-tumor responses. Here we first demonstrate that loxoribine activates cells of the innate immune system selectively via the Toll-like receptor (TLR) 7/MyD88-dependent signaling pathway. TLR7- and MyD88-deficient immune cells fail to proliferate or produce cytokines in response to loxoribine, and genetic complementation of TLR7-deficient cells with murine or human TLR7 confers responsiveness. Subsequently we show that cellular activation by loxoribine and resiquimod (R-848), a stimulus for TLR7 and TLR8, depends on acidification and maturation of endosomes and targets MyD88 to vesicular structures with lysosomal characteristics. This mode of TLR7 and TLR8 action resembles CpG-DNA-driven TLR9 activation. We thus conclude that TLR7, 8 and 9 form a functional subgroup within the TLR family that recognizes pathogen-associated molecular patterns in endosomal/lysosomal compartments. Topics: Adaptor Proteins, Signal Transducing; Animals; Antigens, Differentiation; Cytoplasmic Vesicles; DNA-Binding Proteins; Guanosine; Humans; Imidazoles; Macrophages; Membrane Glycoproteins; Mice; Mitogens; Multigene Family; Myeloid Differentiation Factor 88; Receptors, Cell Surface; Receptors, Immunologic; Spleen; Toll-Like Receptor 7; Toll-Like Receptor 8; Toll-Like Receptor 9; Toll-Like Receptors | 2003 |