lotaustralin has been researched along with cyanogen* in 2 studies
2 other study(ies) available for lotaustralin and cyanogen
Article | Year |
---|---|
Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme.
Cassava (Manihot esculenta) is a eudicotyledonous plant that produces the valine- and isoleucine-derived cyanogenic glucosides linamarin and lotaustralin with the corresponding oximes and cyanohydrins as key intermediates. CYP79 enzymes catalyzing amino acid-to-oxime conversion in cyanogenic glucoside biosynthesis are known from several plants including cassava. The enzyme system converting oxime into cyanohydrin has previously only been identified in the monocotyledonous plant great millet (Sorghum bicolor). Using this great millet CYP71E1 sequence as a query in a Basic Local Alignment Search Tool-p search, a putative functional homolog that exhibited an approximately 50% amino acid sequence identity was found in cassava. The corresponding full-length cDNA clone was obtained from a plasmid library prepared from cassava shoot tips and was assigned CYP71E7. Heterologous expression of CYP71E7 in yeast afforded microsomes converting 2-methylpropanal oxime (valine-derived oxime) and 2-methylbutanal oxime (isoleucine-derived oxime) to the corresponding cyanohydrins, which dissociate into acetone and 2-butanone, respectively, and hydrogen cyanide. The volatile ketones were detected as 2.4-dinitrophenylhydrazone derivatives by liquid chromatography-mass spectrometry. A K(S) of approximately 0.9 μm was determined for 2-methylbutanal oxime based on substrate-binding spectra. CYP71E7 exhibits low specificity for the side chain of the substrate and catalyzes the conversion of aliphatic and aromatic oximes with turnovers of approximately 21, 17, 8, and 1 min(-1) for the oximes derived from valine, isoleucine, tyrosine, and phenylalanine, respectively. A second paralog of CYP71E7 was identified by database searches and showed approximately 90% amino acid sequence identity. In tube in situ polymerase chain reaction showed that in nearly unfolded leaves, the CYP71E7 paralogs are preferentially expressed in specific cells in the endodermis and in most cells in the first cortex cell layer. In fully unfolded leaves, the expression is pronounced in the cortex cell layer just beside the epidermis and in specific cells in the vascular tissue cortex cells. Thus, the transcripts of the CYP71E7 paralogs colocalize with CYP79D1 and CYP79D2. We conclude that CYP71E7 is the oxime-metabolizing enzyme in cyanogenic glucoside biosynthesis in cassava. Topics: Biocatalysis; Carbon Monoxide; Cytochrome P-450 Enzyme System; DNA, Complementary; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Glucosides; Kinetics; Manihot; Nitriles; Oximes; Plant Leaves; Spectrum Analysis; Substrate Specificity | 2011 |
Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety.
Toxicity of cassava arises due to the presence of the cyanoglucosides linamarin and lotaustralin which are hydrolysed by endogenous enzyme linamarase to acetonecyanohydrin (ACN) and cyanide (CN) which are toxic. Major research efforts to eliminate/reduce cyanoglucosides have focused on (i) development of acyanogenic cassava varieties by breeding; (ii) controlling its metabolism; and (iii) processing to remove cyanogens. The cyanoglucoside (CNG) content in cassava is genetically controlled and cultivars may be classified as low (<50 μg/g), medium (50-100 μg/g) and high CN (>100 μg CN eq./g) varieties. Molecular techniques for reducing tuber CNG have focused on development of transgenic plants with reduced expression of cyt P 450 in leaves, or increased expression of hydroxynitrilelyase in tuber. For immediate solution, CNG content can be reduced using several processing methods. Traditional methods used for processing include boiling, drying, parboiling and drying, baking, steaming, frying and preparation of flour. These processes result in CN losses ranging from 25% to 98%. The cyanogen level in the final product is influenced both by the tuber CNG and the method of processing. In order to achieve safe levels of 10 μg/g in cassava products, new methods of processing, especially for cassava containing more than 250 μg CN eq./g, remains a challenging problem. Topics: beta-Glucosidase; Cyanides; Food Handling; Food Safety; Glucosides; Hydrolysis; Manihot; Nitriles; Plant Leaves; Plants, Genetically Modified | 2011 |