losartan-potassium and rhodioloside

losartan-potassium has been researched along with rhodioloside* in 2 studies

Other Studies

2 other study(ies) available for losartan-potassium and rhodioloside

ArticleYear
Salidroside Inhibits Inflammation Through PI3K/Akt/HIF Signaling After Focal Cerebral Ischemia in Rats.
    Inflammation, 2017, Volume: 40, Issue:4

    Salidroside is being investigated for its therapeutic potential in stroke because it is neuroprotective over an extended therapeutic window of time. In the present study, we investigated the mechanisms underlying the anti-inflammatory effects of salidroside (50 mg/kg intraperitoneally) in rats, given 1 h after reperfusion of a middle cerebral artery that had been occluded for 2 h. After 24 h, we found that salidroside increased the neuronal nuclear protein NeuN and reduced the marker of microglia and macrophages CD11b in the peri-infarct area of the brain. Salidroside also decreased IL-6, IL-1β, TNF-α, CD14, CD44, and iNOs mRNAs. At the same time, salidroside increased the ratio of phosphorylated protein kinase B (p-Akt) to total Akt. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 prevented this increase in p-Akt and reversed the inhibitory effects of salidroside on CD11b and inflammatory mediators. Salidroside also elevated the protein levels of hypoxia-inducible factor (HIF) subunits HIF1α, HIF2α, HIF3α, and of erythropoietin (EPO). The stimulatory effects of salidroside on HIFα subunits were blocked by LY294002. Moreover, YC-1, a HIF inhibitor, abolished salidroside-mediated increase of HIF1α and prevented the inhibitory effects of salidroside on CD11b and inflammatory mediators. Taken together, our results provide evidence for the first time that all three HIFα subunits and EPO can be regulated by PI3K/Akt in cerebral tissue, and that salidroside entrains this signaling pathway to induce production of HIFα subunits and EPO, one or more of which mediate the anti-inflammatory effects of salidroside after cerebral IRI.

    Topics: Animals; Anti-Inflammatory Agents; Brain Ischemia; Erythropoietin; Glucosides; Hypoxia-Inducible Factor 1, alpha Subunit; Inflammation; Phenols; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Reperfusion Injury; Signal Transduction

2017
Salidroside stimulates the accumulation of HIF-1α protein resulted in the induction of EPO expression: a signaling via blocking the degradation pathway in kidney and liver cells.
    European journal of pharmacology, 2012, Mar-15, Volume: 679, Issue:1-3

    Rhodiolae Crenulatae Radix et Rhizoma (Rhodiola), the root and rhizome of Rhodiola crenulata (Hook. f. et Thoms.) H. Ohba, has been used as a traditional Chinese medicine (TCM) to increase the body resistance to mountain sickness in preventing hypoxia; however, the functional ingredient responsible for this adaptogenic effect has not been revealed. Here, we have identified salidroside, a glycoside predominantly found in Rhodiola, is the chemical in providing such anti-hypoxia effect. Cultured human embryonic kidney fibroblast (HEK293T) and human hepatocellular carcinoma (HepG2) were used to reveal the mechanism of this hematopoietic function mediated by salidroside. The application of salidroside in cultures induced the expression of erythropoietin (EPO) mRNA from its transcription regulatory element hypoxia response element (HRE), located on EPO gene. The application of salidroside stimulated the accumulation of hypoxia-inducible factor-1α (HIF-1α) protein, but not HIF-2α protein: the salidroside-induced HIF-1α protein was via the reduction of HIF-1α degradation but not the mRNA induction. The increased HIF-1α could account for the activation of EPO gene. These results supported the notion that hematopoietic function of Rhodiola was triggered, at least partially, by salidroside.

    Topics: Basic Helix-Loop-Helix Transcription Factors; Erythropoietin; Glucosides; HEK293 Cells; Hematinics; Hep G2 Cells; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Kidney; Liver; Phenols; Signal Transduction

2012