losartan-potassium and cibinetide

losartan-potassium has been researched along with cibinetide* in 19 studies

Reviews

2 review(s) available for losartan-potassium and cibinetide

ArticleYear
Flipping the molecular switch for innate protection and repair of tissues: Long-lasting effects of a non-erythropoietic small peptide engineered from erythropoietin.
    Pharmacology & therapeutics, 2015, Volume: 151

    Many disease processes activate a cellular stress response that initiates a cascade of inflammation and damage. However, this process also triggers a tissue protection and repair system mediated by locally-produced hyposialated erythropoietin (hsEPO). Although recombinant EPO is used widely for treating anemia, potential use of recombinant EPO for tissue-protection is limited by rises in hematocrit, platelet activation, and selectin expression resulting in a high risk of thrombosis. Importantly, the erythropoietic and tissue-protective effects of EPO are mediated by different receptors. Whereas EPO stimulates red cell progenitors by binding to an EPO receptor (EPOR) homodimer, a heterodimer receptor complex composed of EPOR and β common receptor (βcR) subunits, termed the innate repair receptor (IRR), activates tissue protection and repair. The IRR is typically not expressed by normal tissues, but instead is rapidly induced by injury or inflammation. Based on this understanding, EPO derivatives have been developed which selectively activate the IRR without interacting with the EPOR homodimer. The latest generation of specific ligands of the IRR includes an 11 amino acid peptide modeled from the three dimensional structure of the EPO in the region of helix B called pyroglutamate helix B surface peptide (pHBSP; ARA-290). Despite a short plasma half-life (~2min), pHBSP activates a molecular switch that triggers sustained biological effects that have been observed in a number of experimental animal models of disease and in clinical trials. This review summarizes pharmacokinetic and pharmacodynamic data and discusses the molecular mechanisms underlying the long-lasting effects of this short-lived peptide.

    Topics: Animals; Erythropoietin; Humans; Immunity, Innate; Oligopeptides; Protective Agents; Protein Isoforms; Randomized Controlled Trials as Topic; Receptors, Erythropoietin

2015
Erythropoietin-mediated protection in kidney transplantation: nonerythropoietic EPO derivatives improve function without increasing risk of cardiovascular events.
    Transplant international : official journal of the European Society for Organ Transplantation, 2014, Volume: 27, Issue:3

    The protective, nonerythropoietic effects of erythropoietin (EPO) have become evident in preclinical models in renal ischaemia/reperfusion injury and kidney transplantation. However, four recently published clinical trials using high-dose EPO treatment following renal transplantation did not reveal any protective effect for short-term renal function and even reported an increased risk of thrombosis. This review focusses on the current status of protective pathways mediated by EPO, the safety concerns using high EPO dosage and discusses the discrepancies between pre-clinical and clinical studies. The protective effects are mediated by binding of EPO to a heteromeric receptor complex consisting of two β-common receptors and two EPO receptors. An important role for the activation of endothelial nitric oxide synthase is proposed. EPO-mediated cytoprotection still has enormous potential. However, only nonerythropoietic EPO derivatives may induce protection without increasing the risk of cardiovascular events. In preclinical models, nonerythropoietic EPO derivatives, such as carbamoylated EPO and ARA290, have been tested. These EPO derivatives improve renal function and do not affect erythropoiesis. Therefore, nonerythropoietic EPO derivatives may be able to render EPO-mediated cytoprotection useful and beneficial for clinical transplantation.

    Topics: Animals; Cardiovascular Diseases; Cytoprotection; Erythropoietin; Hematinics; Humans; Kidney; Kidney Transplantation; Nitric Oxide Synthase Type III; Oligopeptides; Receptors, Erythropoietin; Recombinant Proteins; Reperfusion Injury; Risk Factors; Translational Research, Biomedical

2014

Trials

1 trial(s) available for losartan-potassium and cibinetide

ArticleYear
ARA 290, a nonerythropoietic peptide engineered from erythropoietin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes.
    Molecular medicine (Cambridge, Mass.), 2015, Mar-13, Volume: 20

    Although erythropoietin ameliorates experimental type 2 diabetes with neuropathy, serious side effects limit its potential clinical use. ARA 290, a nonhematopoietic peptide designed from the structure of erythropoietin, interacts selectively with the innate repair receptor that mediates tissue protection. ARA 290 has shown efficacy in preclinical and clinical studies of metabolic control and neuropathy. To evaluate the potential activity of ARA 290 in type 2 diabetes and painful neuropathy, subjects were enrolled in this phase 2 study. ARA 290 (4 mg) or placebo were self-administered subcutaneously daily for 28 d and the subjects followed for an additional month without further treatment. No potential safety issues were identified. Subjects receiving ARA 290 exhibited an improvement in hemoglobin A(1c) (Hb A(1c)) and lipid profiles throughout the 56 d observation period. Neuropathic symptoms as assessed by the PainDetect questionnaire improved significantly in the ARA 290 group. Mean corneal nerve fiber density (CNFD) was reduced significantly compared with normal controls and subjects with a mean CNFD >1 standard deviation from normal showed a significant increase in CNFD compared with no change in the placebo group. These observations suggest that ARA 290 may benefit both metabolic control and neuropathy in subjects with type 2 diabetes and deserves continued clinical evaluation.

    Topics: Aged; Diabetes Mellitus, Type 2; Diabetic Neuropathies; Double-Blind Method; Erythropoietin; Female; Glycated Hemoglobin; Humans; Lipids; Male; Middle Aged; Oligopeptides

2015

Other Studies

16 other study(ies) available for losartan-potassium and cibinetide

ArticleYear
Mechanistic Approach for Protective Effect of ARA290, a Specific Ligand for the Erythropoietin/CD131 Heteroreceptor, against Cisplatin-Induced Nephrotoxicity, the Involvement of Apoptosis and Inflammation Pathways.
    Inflammation, 2023, Volume: 46, Issue:1

    ARA 290, an 11-amino acid linear nonhematopoietic peptide derived from the three-dimensional structure of helix B of the erythropoietin (EPO), interacts selectively with the innate repair receptor (IRR) that arbitrates tissue protection. The aim of this study was to investigate the protective effects of ARA290 against cisplatin-induced nephrotoxicity. For this purpose, HEK-293 and ACHN cells were treated with ARA290 (50-400 nM) and cisplatin (2.5 μM) in pretreatment condition. Then, cytotoxicity, genotoxicity, oxidative stress parameters (ROS, GPx, SOD, and MDA), and inflammatory markers (TNFα, IL6, and IL1β) were evaluated. Furthermore, apoptotic cell death was assessed via caspase-3 activity and tunnel assay. To determine the molecular mechanisms of the possible nephroprotective effects of ARA290, gene and protein expressions of TNFα, IL1β, IL6, Caspase-3, Bax, and Bcl2 were evaluated by real-time PCR and western blot assay, respectively. The findings indicated that ARA290 significantly reduced the DNA damage parameters of comet assay and the frequency of micronuclei induced by cisplatin. Besides, ARA290 improved cisplatin-induced oxidative stress by reducing MDA/ROS levels and enhancing antioxidant enzyme levels. In addition, reduced levels of pro-inflammatory cytokines indicated that cisplatin-induced renal inflammation was mitigated upon the treatment with ARA290. Besides, ARA290 ameliorates cisplatin-induced cell injury by antagonizing apoptosis. Furthermore, the molecular findings indicated that gene and protein levels of TNFα, IL1β, IL6, Caspase-3, and Bax were significantly decreased and gene and protein levels of Bcl2 significantly increased in the ARA290 plus cisplatin group compared with the cisplatin group. These findings revealed that ARA290 as a potent chemo-preventive agent exerted a protective effect on cisplatin-induced nephrotoxicity mostly through its anti-apoptotic, anti-inflammatory, and antioxidant potentials and also suggested that ARA290 might be a new therapeutic approach for patients with acute kidney injury.

    Topics: Antioxidants; Apoptosis; bcl-2-Associated X Protein; Caspase 3; Cisplatin; Erythropoietin; HEK293 Cells; Humans; Inflammation; Interleukin-6; Kidney; Ligands; Oxidative Stress; Reactive Oxygen Species; Tumor Necrosis Factor-alpha

2023
Targeting the innate repair receptor axis
    Frontiers in immunology, 2022, Volume: 13

    Topics: Animals; Cytokine Receptor Common beta Subunit; Erythropoietin; Hemolytic-Uremic Syndrome; Humans; Mice; Oligopeptides; Receptors, Erythropoietin; Shiga Toxins; Shiga-Toxigenic Escherichia coli; Swine

2022
The Non-Erythropoietic EPO Analogue Cibinetide Inhibits Osteoclastogenesis In Vitro and Increases Bone Mineral Density in Mice.
    International journal of molecular sciences, 2021, Dec-21, Volume: 23, Issue:1

    The two erythropoietin (EPO) receptor forms mediate different cellular responses to erythropoietin. While hematopoiesis is mediated via the homodimeric EPO receptor (EPOR), tissue protection is conferred via a heteromer composed of EPOR and CD131. In the skeletal system, EPO stimulates osteoclast precursors and induces bone loss. However, the underlying molecular mechanisms are still elusive. Here, we evaluated the role of the heteromeric complex in bone metabolism in vivo and in vitro by using Cibinetide (CIB), a non-erythropoietic EPO analogue that exclusively binds the heteromeric receptor. CIB is administered either alone or in combination with EPO. One month of CIB treatment significantly increased the cortical (~5.8%) and trabecular (~5.2%) bone mineral density in C57BL/6J WT female mice. Similarly, administration of CIB for five consecutive days to female mice that concurrently received EPO on days one and four, reduced the number of osteoclast progenitors, defined by flow cytometry as Lin

    Topics: Animals; Bone Density; Cell Differentiation; Cells, Cultured; Erythropoietin; Female; Hematopoiesis; Mice; Mice, Inbred C57BL; Oligopeptides; Osteoclasts; Osteogenesis

2021
Erythropoietin Mimetic Peptide (pHBSP) Corrects Endothelial Dysfunction in a Rat Model of Preeclampsia.
    International journal of molecular sciences, 2020, Sep-15, Volume: 21, Issue:18

    Preeclampsia is a severe disease of late pregnancy. Etiological factors and a pathogenetic pattern of events still require significant clarification, but it is now recognized that a large role is played by placentation disorders and emerging endothelial dysfunction. The administration of short-chain peptides mimicking the spatial structure of the B erythropoietin chain may become one of the directions of searching for new drugs for preeclampsia prevention and therapy. Simulation of ADMA-like preeclampsia in Wistar rats was performed by the administration of a non-selective NOS blocker L-NAME from the 14th to 20th day of pregnancy. The administration of the pHBSP at the doses of 10 µg/kg and 250 µg/kg corrected the established morphofunctional disorders. The greatest effect was observed at a dose of 250 µg/kg. There was a decrease in systolic and diastolic blood pressure by 31.2 and 32.8%, respectively (

    Topics: Animals; bcl-2-Associated X Protein; Blood Pressure; Disease Models, Animal; Endothelial Cells; Endothelium, Vascular; Erythropoietin; Female; Microcirculation; NG-Nitroarginine Methyl Ester; Oligopeptides; Placenta; Pre-Eclampsia; Pregnancy; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Wistar

2020
The vasoreparative potential of endothelial colony-forming cells in the ischemic retina is enhanced by cibinetide, a non-hematopoietic erythropoietin mimetic.
    Experimental eye research, 2019, Volume: 182

    Retinal ischemia remains a common sight threatening end-point in blinding diseases such as diabetic retinopathy and retinopathy of prematurity. Endothelial colony forming cells (ECFCs) represent a subpopulation of endothelial progenitors with therapeutic utility for promoting reparative angiogenesis in the ischaemic retina. The current study has investigated the potential of enhancing this cell therapy approach by the dampening of the pro-inflammatory milieu typical of ischemic retina. Based on recent findings that ARA290 (cibinetide), a peptide based on the Helix-B domain of erythropoietin (EPO), is anti-inflammatory and tissue-protective, the effect of this peptide on ECFC-mediated vascular regeneration was studied in the ischemic retina.. The effects of ARA290 on pro-survival signaling and function were assessed in ECFC cultures in vitro. Efficacy of ECFC transplantation therapy to promote retinal vascular repair in the presence and absence of ARA290 was studied in the oxygen induced retinopathy (OIR) model of retinal ischemia. The inflammatory cytokine profile and microglial activation were studied as readouts of inflammation.. ARA290 activated pro-survival signaling and enhanced cell viability in response to H. Regulation of the pro-inflammatory milieu of the ischemic retina can be enhanced by ARA290 and may be a useful adjunct to ECFC-based cell therapy for ischemic retinopathies.

    Topics: Animals; Cells, Cultured; Disease Models, Animal; Endothelium, Vascular; Erythropoietin; Humans; Infant, Newborn; Ischemia; Mice; Mice, Inbred C57BL; Oligopeptides; Retinal Diseases; Retinal Vessels; Signal Transduction; Vasodilation

2019
Non-erythropoietic erythropoietin-derived peptide protects mice from systemic lupus erythematosus.
    Journal of cellular and molecular medicine, 2018, Volume: 22, Issue:7

    Systemic lupus erythematosus (SLE) is an autoimmune disease, which results in various organ pathologies. However, current treatment towards SLE is suboptimal. Erythropoietin (EPO) has been shown to promote SLE recovery, but clinical application can be limited by its haematopoiesis-stimulating effects. EPO-derived helix-B peptide (ARA290) is non-erythrogenic but has been reported to retain the anti-inflammatory and tissue-protective functions of EPO. Therefore, here we investigated the effects and potential mechanisms of ARA290 on SLE. The administration of ARA290 to pristane-induced SLE and MRL/lpr mice significantly suppressed the level of serum antinuclear autoantibodies (ANAs) and anti-dsDNA autoantibodies, reduced the deposition of IgG and C3, and ameliorated the nephritis symptoms. Moreover, the serum concentrations of inflammatory cytokine IL-6, MCP-1 and TNF-α in SLE mice were reduced by ARA290. Further, ARA290 decreased the number of apoptotic cells in kidney. In vitro experiment revealed that ARA290 inhibited the inflammatory activation of macrophages and promoted the phagocytotic function of macrophages to apoptotic cells. Finally, ARA290 did not induce haematopoiesis during treatment. In conclusion, ARA290 ameliorated SLE, which at least could be partly due to its anti-inflammatory and apoptotic cell clearance promoting effects, without stimulating haematopoiesis, suggesting that ARA290 could be a hopeful candidate for SLE treatment.

    Topics: Animals; Cytokines; Disease Models, Animal; Erythropoietin; Female; Hematopoiesis; Inflammation; Kidney; Lupus Erythematosus, Systemic; Macrophage Activation; Mice; Mice, Inbred C57BL; Mice, Inbred MRL lpr; Oligopeptides; Phagocytosis; RAW 264.7 Cells; Terpenes

2018
Cibinetide dampens innate immune cell functions thus ameliorating the course of experimental colitis.
    Scientific reports, 2017, 10-12, Volume: 7, Issue:1

    Two distinct forms of the erythropoietin receptor (EPOR) mediate the cellular responses to erythropoietin (EPO) in different tissues. EPOR homodimers signal to promote the maturation of erythroid progenitor cells. In other cell types, including immune cells, EPOR and the ß-common receptor (CD131) form heteromers (the innate repair receptor; IRR), and exert tissue protective effects. We used dextran sulphate sodium (DSS) to induce colitis in C57BL/6 N mice. Once colitis was established, mice were treated with solvent, EPO or the selective IRR agonist cibinetide. We found that both cibinetide and EPO ameliorated the clinical course of experimental colitis in mice, resulting in improved weight gain and survival. Correspondingly, DSS-exposed mice treated with cibinetide or EPO displayed preserved tissue integrity due to reduced infiltration of myeloid cells and diminished production of pro-inflammatory disease mediators including cytokines, chemokines and nitric oxide synthase-2. Experiments using LPS-activated primary macrophages revealed that the anti-inflammatory effects of cibinetide were dependent on CD131 and JAK2 functionality and were mediated via inhibition of NF-κB subunit p65 activity. Cibinetide activation of the IRR exerts potent anti-inflammatory effects, especially within the myeloid population, reduces disease activity and mortality in mice. Cibinetide thus holds promise as novel disease-modifying therapeutic of inflammatory bowel disease.

    Topics: Animals; Chemokines; Colitis; Cytokine Receptor Common beta Subunit; Dextran Sulfate; Disease Progression; Erythropoietin; Female; Humans; Immunity, Innate; Intestinal Mucosa; Janus Kinase 2; Macrophages; Male; Mice, Inbred C57BL; Myeloid Cells; Oligopeptides; Phosphatidylinositol 3-Kinases; Phosphorylation; Receptors, Erythropoietin; Solubility; T-Lymphocytes, Helper-Inducer; Transcription Factor RelA

2017
Functionalized Biopolymer Particles Enhance Performance of a Tissue-Protective Peptide under Proteolytic and Thermal Stress.
    Biomacromolecules, 2016, 06-13, Volume: 17, Issue:6

    Cutaneous burns are often exacerbated by poor perfusion and subsequent necrosis of the microvasculature surrounding the primary injury. Preservation of these vessels can reduce necrotic tissue expansion and increase success rates of skin graft procedures. Recent work has identified a peptide derived from erythropoietin, ARA290, with the ability to mediate tissue protection in a variety of cell types. Here we demonstrate the advantages of fusing ARA290 to an elastin-like polypeptide (ELP) to salvage microvascular endothelial cells in harsh proteolytic conditions following thermal shock. These fusion proteins were expressed recombinantly in bacterial hosts and rapidly purified by inverse transition cycling. They were shown to spontaneously aggregate into particles at subphysiological temperatures. The bifunctional submicron particles were resistant to digestion in enzymes upregulated after burn injury. Furthermore, the data strongly suggest these ARA290-functionalized particles were superior to treatment with the peptide alone in preventing microvascular cell death in these conditions. The results bring to light an efficient and cost-effective strategy for the delivery therapeutic peptides to proteolytically active wound sites.

    Topics: Biopolymers; Burns; Cell Line; Cell Survival; Elastin; Erythropoietin; Escherichia coli; Hot Temperature; Humans; Microvessels; Oligopeptides; Proteolysis; Recombinant Fusion Proteins; Skin; Wound Healing

2016
Erythropoietin's inhibiting impact on hepcidin expression occurs indirectly.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2015, Feb-15, Volume: 308, Issue:4

    Under conditions of accelerated erythropoiesis, elevated erythropoietin (Epo) levels are associated with inhibition of hepcidin synthesis, a response that ultimately increases iron availability to meet the enhanced iron needs of erythropoietic cells. In the search for erythroid regulators of hepcidin, many candidates have been proposed, including Epo itself. We aimed to test whether direct interaction between Epo and the liver is required to regulate hepcidin. We found that prolonged administration of high doses of Epo in mice leads to great inhibition of liver hepcidin mRNA levels, and concomitant induction of the hepcidin inhibitor erythroferrone (ERFE). Epo treatment also resulted in liver iron mobilization, mediated by increased ferroportin activity and accompanied by reduced ferritin levels and increased TfR1 expression. The same inhibitory effect was observed in mice that do not express the homodimeric Epo receptor (EpoR) in liver cells because EpoR expression is restricted to erythroid cells. Similarly, liver signaling pathways involved in hepcidin regulation were not influenced by the presence or absence of hepatic EpoR. Moreover, Epo analogs, possibly interacting with the postulated heterodimeric β common EpoR, did not affect hepcidin expression. These findings were supported by the lack of inhibition on hepcidin found in hepatoma cells exposed to various concentrations of Epo for different periods of times. Our results demonstrate that hepcidin suppression does not require the direct binding of Epo to its liver receptors and rather suggest that the role of Epo is to stimulate the synthesis of the erythroid regulator ERFE in erythroblasts, which ultimately downregulates hepcidin.

    Topics: Animals; Cytokines; Dose-Response Relationship, Drug; Down-Regulation; Erythropoietin; Hep G2 Cells; Hepcidins; Humans; Iron; Liver; Male; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Muscle Proteins; Oligopeptides; Receptors, Erythropoietin; RNA, Messenger; Time Factors

2015
Potential role of erythropoietin receptors and ligands in attenuating apoptosis and inflammation in critical limb ischemia.
    Journal of vascular surgery, 2014, Volume: 60, Issue:1

    Managing critical limb ischemia (CLI) is challenging. Furthermore, ischemic myopathy prevents good functional outcome after revascularization. Hence, we have focused on limiting the tissue damage rather than angiogenesis, which has traditionally been the motivation to develop nonsurgical treatments for CLI. Erythropoietin (EPO) protects ischemic tissue, and this property may also benefit CLI. The objective of this study was to examine the expression of the tissue-protective EPO receptor complex (EPOR-CD131 [β-chain of interleukin (IL)-3/IL-5/granulocyte macrophage colony-stimulating factor receptor]) in skeletal muscle obtained from humans with CLI. Because native EPO is thrombogenic, the antiapoptotic and anti-inflammatory effects of a nonhematopoietic helix-B peptide of EPO (ARA 290) were investigated on ischemic myotubes in vitro.. Tissue was obtained from gastrocnemius muscle of 12 patients undergoing amputation for CLI and from 12 patients without limb ischemia. The expression of EPOR and CD131 was demonstrated by immunohistochemistry and Western blot. A validated in vitro model of myotube ischemia was used in which mature C2C12 myotubes were cultured 6 to 12 hours in a depleted media and gas mixture (20% CO2 and 80% N2). The myotubes were pretreated with EPO or ARA 290 before exposure to simulated ischemia. Apoptosis and cell death were determined by cleaved caspase-3 assay and lactate dehydrogenase release assay. Enzyme-linked immunosorbent assay measured the inflammatory cytokines.. EPOR and CD131 were expressed and significantly upregulated in CLI (average optical density [OD] in Western blot [control vs CLI] EPOR, 0.05 U vs 0.1 U; CD131, 0.10 U vs 0.22 U; P < .01). There was colocalization of EPOR and CD131 in the sarcolemma (cell membrane) of the skeletal myofiber. There was no difference in the distribution of colocalization between the CLI and the normal muscle. The ischemic myotubes treated by ARA 290 in vitro had a significantly decreased number of apoptotic cells (ischemia vs ischemia plus ARA 290: 71.1% vs 55.1%; P < .01), cleaved caspase-3 (OD of ischemia vs ischemia plus ARA 290: 0.15 U vs 0.02 U; P < .01), lactate dehydrogenase release (ischemia vs ischemia plus ARA 290: 32.5 U/L vs 21.3 U/L; P < .01), and IL-6 release (OD at 450 nm, ischemia vs ischemia plus ARA 290: 0.18 vs 0.13; P < .01).. This study demonstrates the expression and the upregulation of EPOR and CD131 in CLI and also shows that EPOR and CDI are colocalized in the cell membrane of both ischemic and control muscle fiber. The in vitro experiments demonstrate that ARA 290 decreases inflammation and apoptosis of ischemic myotubes. ARA 290 may potentially be used as adjunctive treatment for CLI.

    Topics: Aged; Apoptosis; Case-Control Studies; Caspase 3; Cell Membrane; Cytokine Receptor Common beta Subunit; Erythropoietin; Extremities; Female; Humans; Inflammation; Interleukin-6; Ischemia; L-Lactate Dehydrogenase; Male; Middle Aged; Muscle Fibers, Skeletal; Oligopeptides; Receptors, Erythropoietin; Up-Regulation

2014
ARA 290, a peptide derived from the tertiary structure of erythropoietin, produces long-term relief of neuropathic pain coupled with suppression of the spinal microglia response.
    Molecular pain, 2014, Feb-16, Volume: 10

    Neuropathic pain is a difficult to treat disorder arising from central or peripheral nervous system lesions. The etiology of neuropathic pain consists of several overlapping pathways converging into an exaggerated pain state with symptoms such as allodynia and hyperalgesia. One of these pathways involves activation of spinal cord microglia and astrocytes, which drive and maintain the inflammatory response following the lesion. These cells are a potential target for drugs for neuropathic pain relief. In this current study, we investigated the dose-effect relationship of the tissue protective peptide ARA 290, derived from the tertiary structure of erythropoietin, on allodynia and concurrent spinal cord microglia and astrocytes.. Following a spared nerve injury in rats, vehicle or ARA290 (administered in either one of 4 doses: 3, 10, 30 and 60 μg/kg) was administered on days 1, 3, 6, 8 and 10. ARA290 exerted a dose-response effect by significantly reducing mechanical allodynia up to 20 weeks when compared to vehicle. The reduction of cold allodynia was significant up to 20 weeks for the doses 3, 10, 30 and 60 μg/kg when compared to vehicle. The effect 10 and 30 μg/kg ARA290 and vehicle on the microglia response (iba-1-immunoreactivity, iba-1-IR) and astrocyte reaction (GFAP-immunoreactivity, GFAP-IR) was investigated in animals surviving 2 (group 1) or 20 (group 2) weeks following lesion or sham surgery. In group 1, significant microglia reactivity was observed in the L5 segment of the spinal cord of animals treated with vehicle when compared to sham operated, while animals treated with 10 or 30 μg/kg did not show a increase. In group 2, a more widespread and increased microglia reactivity was observed for animals treated with 0 and 10 μg/kg when compared to sham operated animals, indicated by involvement of more spinal cord segments and higher iba-1-IR. Animals treated with 30 μg/kg did not show increased microglia reactivity. No difference in astrocyte reaction was observed.. The erythropoietin-analogue ARA290 dose-dependently reduced allodynia coupled to suppression of the spinal microglia response, suggestive of a mechanistic link between ARA290-induced suppression of central inflammation and relief of neuropathic pain symptoms.

    Topics: Animals; Calcium-Binding Proteins; Dose-Response Relationship, Drug; Erythropoietin; Female; Glial Fibrillary Acidic Protein; Hyperalgesia; Microfilament Proteins; Microglia; Neuralgia; Oligopeptides; Posterior Horn Cells; Protein Structure, Tertiary; Rats; Rats, Sprague-Dawley; Sciatic Nerve; Spinal Cord; Time Factors

2014
Erythropoietin-derived nonerythropoietic peptide ameliorates experimental autoimmune neuritis by inflammation suppression and tissue protection.
    PloS one, 2014, Volume: 9, Issue:3

    Experimental autoimmune neuritis (EAN) is an autoantigen-specific T-cell-mediated disease model for human demyelinating inflammatory disease of the peripheral nervous system. Erythropoietin (EPO) has been known to promote EAN recovery but its haematopoiesis stimulating effects may limit its clinic application. Here we investigated the effects and potential mechanisms of an EPO-derived nonerythropoietic peptide, ARA 290, in EAN. Exogenous ARA 290 intervention greatly improved EAN recovery, improved nerve regeneration and remyelination, and suppressed nerve inflammation. Furthermore, haematopoiesis was not induced by ARA 290 during EAN treatment. ARA 290 intervention suppressed lymphocyte proliferation and altered helper T cell differentiation by inducing increase of Foxp3+/CD4+ regulatory T cells and IL-4+/CD4+ Th2 cells and decrease of IFN-γ+/CD4+ Th1 cells in EAN. In addition, ARA 290 inhibited inflammatory macrophage activation and promoted its phagocytic activity. In vitro, ARA 290 was shown to promote Schwann cell proliferation and inhibit its inflammatory activation. In summary, our data demonstrated that ARA 290 could effectively suppress EAN by attenuating inflammation and exerting direct cell protection, indicating that ARA 290 could be a potent candidate for treatment of autoimmune neuropathies.

    Topics: Animals; Cell Differentiation; Cell Proliferation; Erythropoietin; Inflammation; Injections, Intraperitoneal; Injections, Subcutaneous; Male; Nerve Regeneration; Neuritis, Autoimmune, Experimental; Neuropeptides; Neuroprotective Agents; Oligopeptides; Rats; Rats, Inbred Lew; Sciatic Nerve; T-Lymphocytes, Helper-Inducer; T-Lymphocytes, Regulatory; Th1-Th2 Balance

2014
A non-erythropoietic peptide derivative of erythropoietin decreases susceptibility to diet-induced insulin resistance in mice.
    British journal of pharmacology, 2014, Volume: 171, Issue:24

    The haematopoietic activity of erythropoietin (EPO) is mediated by the classic EPO receptor (EpoR) homodimer, whereas tissue-protective effects are mediated by a heterocomplex between EpoR and the β-common receptor (βcR). Here, we investigated the effects of a novel, selective ligand of this heterocomplex - pyroglutamate helix B surface peptide (pHBSP) - in mice fed a diet enriched in sugars and saturated fats.. Male C57BL/6J mice were fed a high-fat high-sucrose diet (HFHS) for 22 weeks. pHBSP (30 μg·kg(-1) s.c.) was administered for the last 11 weeks. Biochemical assays, histopathological and immunohistochemical examinations and Western blotting were performed on serum and target organs (liver, kidney and skeletal muscle).. Mice fed with HFHS diet exhibited insulin resistance, hyperlipidaemia, hepatic lipid accumulation and kidney dysfunction. In gastrocnemius muscle, HFHS impaired the insulin signalling pathway and reduced membrane translocation of glucose transporter type 4 and glycogen content. Treatment with pHBSP ameliorated renal function, reduced hepatic lipid deposition, and normalized serum glucose and lipid profiles. These effects were associated with an improvement in insulin sensitivity and glucose uptake in skeletal muscle. Diet-induced overproduction of the myokines IL-6 and fibroblast growth factor-21 were attenuated by pHBSP and, most importantly, pHBSP markedly enhanced mitochondrial biogenesis in skeletal muscle.. Chronic treatment of mice with an EPO derivative, devoid of haematopoietic effects, improved metabolic abnormalities induced by a high-fat high-sucrose diet, by affecting several levels of the insulin signalling and inflammatory cascades within skeletal muscle, while enhancing mitochondrial biogenesis.

    Topics: Animals; Blood Glucose; Dietary Fats; Dietary Sucrose; Erythropoietin; Fatty Liver; Hyperlipidemias; Insulin Resistance; Kidney; Liver; Male; Mice; Mice, Inbred C57BL; Muscle, Skeletal; Oligopeptides; Renal Insufficiency

2014
Erythropoietin receptor (EpoR) agonism is used to treat a wide range of disease.
    Molecular medicine (Cambridge, Mass.), 2013, Apr-30, Volume: 19

    The erythropoietin receptor (EpoR) was discovered and described in red blood cells (RBCs), stimulating its proliferation and survival. The target in humans for EpoR agonists drugs appears clear-to treat anemia. However, there is evidence of the pleitropic actions of erythropoietin (Epo). For that reason, rhEpo therapy was suggested as a reliable approach for treating a broad range of pathologies, including heart and cardiovascular diseases, neurodegenerative disorders (Parkinson's and Alzheimer's disease), spinal cord injury, stroke, diabetic retinopathy and rare diseases (Friedreich ataxia). Unfortunately, the side effects of rhEpo are also evident. A new generation of nonhematopoietic EpoR agonists drugs (asialoEpo, Cepo and ARA 290) have been investigated and further developed. These EpoR agonists, without the erythropoietic activity of Epo, while preserving its tissue-protective properties, will provide better outcomes in ongoing clinical trials. Nonhematopoietic EpoR agonists represent safer and more effective surrogates for the treatment of several diseases such as brain and peripheral nerve injury, diabetic complications, renal ischemia, rare diseases, myocardial infarction, chronic heart disease and others.

    Topics: Animals; Asialoglycoproteins; Brain Diseases; Cardiovascular Diseases; Diabetes Complications; Erythropoietin; Humans; Oligopeptides; Receptors, Erythropoietin

2013
Treatment of mild traumatic brain injury with an erythropoietin-mimetic peptide.
    Journal of neurotrauma, 2013, May-01, Volume: 30, Issue:9

    Mild traumatic brain injury (mTBI) results in an estimated 75-90% of the 1.7 million TBI-related emergency room visits each year. Post-concussion symptoms, which can include impaired memory problems, may persist for prolonged periods of time in a fraction of these cases. The purpose of this study was to determine if an erythropoietin-mimetic peptide, pyroglutamate helix B surface peptide (pHBSP), would improve neurological outcomes following mTBI. Sixty-four rats were randomly assigned to pHBSP or control (inactive peptide) 30 μg/kg IP every 12 h for 3 days, starting at either 1 hour (early treatment) or 24 h (delayed treatment), after mTBI (cortical impact injury 3 m/sec, 2.5 mm deformation). Treatment with pHBSP resulted in significantly improved performance on the Morris water maze task. Rats that received pHBSP required 22.3±1.3 sec to find the platform, compared to 26.3±1.3 sec in control rats (p=0.022). The rats that received pHBSP also traveled a significantly shorter distance to get to the platform, 5.0±0.3 meters, compared to 6.1±0.3 meters in control rats (p=0.019). Motor tasks were only transiently impaired in this mTBI model, and no treatment effect on motor performance was observed with pHBSP. Despite the minimal tissue injury with this mTBI model, there was significant activation of inflammatory cells identified by labeling with CD68, which was reduced in the pHBSP-treated animals. The results suggest that pHBSP may improve cognitive function following mTBI.

    Topics: Animals; Brain; Brain Concussion; Disease Models, Animal; Erythropoietin; Maze Learning; Motor Activity; Neuroprotective Agents; Oligopeptides; Rats; Rats, Long-Evans; Recovery of Function

2013
The erythropoietin-derived peptide ARA290 reverses mechanical allodynia in the neuritis model.
    Neuroscience, 2013, Mar-13, Volume: 233

    Studies on the neuritis model suggest that in many patients with neuropathic pain, symptoms may be due to nerve inflammation rather than frank nerve injury. Treatments for these patients are often ineffective. The neuroprotective and hematopoietic agent erythropoietin (EPO) has been shown to reverse pain behaviors in nerve injury models and therefore may be of therapeutic benefit. However, EPO can cause thrombosis. ARA290 is an analog of EPO that has the neuroprotective activities of EPO without stimulating hematopoiesis. The present study has examined the effects of ARA290 on pain behavior in the neuritis model. Following neuritis induction, 30 or 120 μg/kg ARA290 or saline vehicle was injected intraperitoneally into rats daily from day 1 post surgery. Animals were assessed for mechanical allodynia and heat hyperalgesia. Levels of the cytokine tumor necrosis factor-α (TNF-α) and chemokine (CC motif) ligand 2 (CCL2) mRNA were also assessed using polymerase chain reaction. Vehicle-treated neuritis animals (n=20) developed signs of mechanical allodynia and heat hyperalgesia that reached a maximum on day 4 and 3 of testing, respectively. Treatment with either 30 (n=11) or 120 μg/kg ARA290 (n=9) prevented the development of mechanical allodynia. However, ARA290 did not significantly affect heat hyperalgesia. There was no significant difference between the effects of each drug dose (p<0.05, unpaired t test comparing area under the curve for mechanical allodynia). The levels of CCL2 and TNF-α mRNA in the nerve and Gelfoam were not significantly different following 120 μg/kg ARA290 treatment (n=3-7) compared to vehicle-treated animals (n=3-7; p=0.24; unpaired t tests). In summary, ARA290 may be beneficial in the treatment of neuropathic pain symptoms where signs of nerve injury are absent on clinical assessment. The mechanisms of action do not appear to involve the inhibition of TNF-α or CCL2 production.

    Topics: Animals; Chemokine CCL2; Disease Models, Animal; Erythropoietin; Hyperalgesia; Male; Neuralgia; Neuritis; Neuroprotective Agents; Oligopeptides; Rats; Rats, Sprague-Dawley; RNA, Messenger; Sciatic Nerve; Tumor Necrosis Factor-alpha

2013