losartan-potassium has been researched along with 4-(2-(5-6-7-8-tetrahydro-5-5-8-8-tetramethyl-2-naphthalenyl)-1-propenyl)benzoic-acid* in 2 studies
2 other study(ies) available for losartan-potassium and 4-(2-(5-6-7-8-tetrahydro-5-5-8-8-tetramethyl-2-naphthalenyl)-1-propenyl)benzoic-acid
Article | Year |
---|---|
Retinoic acid induces apoptosis of human CD34+ hematopoietic progenitor cells: involvement of retinoic acid receptors and retinoid X receptors depends on lineage commitment of the hematopoietic progenitor cells.
Retinoids are bifunctional regulators of growth and differentiation of hematopoietic cells. In this study we explored the effects of retinoic acid (RA) on apoptosis of human CD34+ hematopoietic progenitor cells isolated from normal bone marrow. RA (100 nM) induced an increase in the percentage of dead cells from 24% to 44% at day 6 (p < 0.05, n = 6) as compared to control cells cultured in medium alone. The effect was dose dependent and appeared relatively late. Significant differences were observed from day 4 onward. Apoptosis, or programmed cell death, was demonstrated as the mode of cell death by using the TUNEL assay, which detects single strand nicks in DNA, or by the Nicoletti technique demonstrating a subdiploid population by DNA staining. RA previously was found to inhibit granulocyte colony-stimulating factor--and not granulocyte-macrophage colony-stimulating factor--stimulated proliferation of CD34+ cells. However, we found that RA opposed anti-apoptotic effects of G-CSF and GM-CSF on CD34+ cells (G-CSF: 8% dead cells at day 6; G-CSF + RA: 20%; GM-CSF: 12%; GM-CSF + RA: 27%). Moreover, RA induced apoptosis of CD34+ cells and CD34+CD71+ cells stimulated with erythropoietin. To explore the receptor signaling pathways involved in RA-induced apoptosis, we used selective ligands for retinoic acid receptors (RARs; RO13-7410) and retinoid X receptors (RXRs; RO 25-6603). We found that RARs were involved in RA-mediated apoptosis of myeloid progenitor cells, whereas RARs as well as RXRs were involved in RA-mediated apoptosis of erythroid progenitor cells. Topics: Antigens, CD34; Antineoplastic Agents; Apoptosis; Benzoates; Cell Differentiation; Cell Division; Cell Lineage; Cells, Cultured; Cyclohexanes; Dose-Response Relationship, Drug; Erythroid Precursor Cells; Erythropoietin; Granulocyte Colony-Stimulating Factor; Granulocyte-Macrophage Colony-Stimulating Factor; Hematopoietic Stem Cells; Humans; In Situ Nick-End Labeling; Ligands; Pentanoic Acids; Receptors, Retinoic Acid; Retinoid X Receptors; Retinoids; Signal Transduction; Transcription Factors; Tretinoin | 1999 |
The RAR-RXR as well as the RXR-RXR pathway is involved in signaling growth inhibition of human CD34+ erythroid progenitor cells.
Previous studies have shown that retinoic acid (RA), similar to tumor necrosis factor-alpha (TNF-alpha), can act as a bifunctional regulator of the growth of bone marrow progenitors, in that it can stimulate granulocyte-macrophage colony-stimulating factor (GM-CSF)- or interleukin-3 (IL-3)-induced GM colony formation, but potently inhibit G-CSF-induced growth. The present study, using highly enriched human CD34+ as well as Lin- murine bone marrow progenitor cells, demonstrates a potent inhibitory effect of 9-cis-RA on burst-forming unit-erythroid (BFU-E) colony formation regardless of the cytokine stimulating growth. Specifically, 9-cis-RA potently inhibited the growth of BFU-E response to erythropoietin (Epo) (100%), stem cell factor (SCF) + Epo (92%), IL-3 + Epo (97%), IL-4 + Epo (88%), and IL-9 + Epo (100%). Erythroid colony growth was also inhibited when CD34+ progenitors were seeded at one cell per well, suggesting a direct action of RA. Using synthetic ligands to retinoic acid receptors (RARs) and retinoid X receptors (RXRs) that selectively bind and activate RAR-RXR or RXR-RXR dimers, respectively, we dissected the involvement of the two retinoid response pathways in the regulation of normal myeloid and erythroid progenitor cell growth. Transactivation studies showed that both the RAR (Ro 13-7410) and RXR (Ro 25-6603 and Ro 25-7386) ligands were highly selective at 100 nmol/L. At this concentration, Ro 13-7410 potently inhibited G-CSF-stimulated myeloid as well as SCF + Epo-induced erythroid colony growth. At the same concentration, Ro 25-6603 and Ro 25-7386 had little or no effect on G-CSF-induced colony formation, whereas they inhibited 75% and 53%, respectively, of SCF + Epo-stimulated BFU-E colony growth. Thus, the RAR-RXR response pathway can signal growth inhibition of normal bone marrow myeloid and erythroid progenitor cells. In addition, we demonstrate a unique involvement of the RXR-RXR pathway in mediating growth inhibition of erythroid but not myeloid progenitor cells. Topics: Animals; Antigens, CD34; Base Sequence; Benzoates; Consensus Sequence; Cyclohexanes; Depression, Chemical; Erythroid Precursor Cells; Erythropoiesis; Erythropoietin; Hematopoietic Cell Growth Factors; Humans; Interleukins; Mice; Mice, Inbred BALB C; Molecular Sequence Data; Pentanoic Acids; Rats; Receptors, Retinoic Acid; Recombinant Proteins; Retinoic Acid Receptor alpha; Retinoid X Receptors; Retinoids; Signal Transduction; Stem Cell Factor; Transcription Factors; Tretinoin | 1996 |