losartan and sb 203580

losartan has been researched along with sb 203580 in 9 studies

Research

Studies (9)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's5 (55.56)29.6817
2010's4 (44.44)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
McCulloch, CA; Seth, A; Wang, J1
Bobrovskaya, L; Dunkley, PR; Leal, RB; Odell, A1
Bevilaqua, LR; Cammarota, M; Dunkley, PR; Rostas, JA1
Ingelfinger, JR; Moini, B; Zhang, SL1
Carraro-Lacroix, LR; Girardi, AC; Malnic, G1
Han, C; Li, M; Liu, J; Mao, J; Pang, X; Wang, B1
Bruemmer, D; Daugherty, A; Golledge, J; Heywood, EB; Subramanian, V1
Ishikawa, M; Kanno, S; Nakagawasai, O; Nemoto, W; Tadano, T; Tan-No, K; Yaoita, F; Yomogida, S1
Jiang, X; Li, SH; Li, ZH; Liang, JX; Liao, X; Liu, HW; Wu, F; Wu, YD; Xu, Y; Yan, JX1

Other Studies

9 other study(ies) available for losartan and sb 203580

ArticleYear
Force regulates smooth muscle actin in cardiac fibroblasts.
    American journal of physiology. Heart and circulatory physiology, 2000, Volume: 279, Issue:6

    Topics: Actins; Angiotensin II; Animals; Antihypertensive Agents; Cells, Cultured; Colchicine; Enzyme Inhibitors; Fibroblasts; Gene Expression; Imidazoles; Losartan; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Myocardium; p38 Mitogen-Activated Protein Kinases; Pyridines; Rats; Rats, Sprague-Dawley; RNA, Messenger; Stress, Mechanical; Vasoconstrictor Agents

2000
Tyrosine hydroxylase phosphorylation in bovine adrenal chromaffin cells: the role of MAPKs after angiotensin II stimulation.
    Journal of neurochemistry, 2001, Volume: 78, Issue:3

    Topics: Adrenal Glands; Angiotensin II; Angiotensin Receptor Antagonists; Animals; Anisomycin; Antihypertensive Agents; Butadienes; Cattle; Chromaffin Cells; Chromatography, High Pressure Liquid; Enzyme Inhibitors; Flavonoids; Imidazoles; Immunoblotting; Losartan; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Nitriles; Phosphorylation; Phosphoserine; Protein Synthesis Inhibitors; Pyridines; Receptors, Angiotensin; Time Factors; Tyrosine 3-Monooxygenase

2001
Angiotensin II promotes the phosphorylation of cyclic AMP-responsive element binding protein (CREB) at Ser133 through an ERK1/2-dependent mechanism.
    Journal of neurochemistry, 2001, Volume: 79, Issue:6

    Topics: Adrenal Medulla; Angiotensin II; Angiotensin Receptor Antagonists; Animals; Benzylamines; Butadienes; Cattle; Cells, Cultured; Cyclic AMP; Cyclic AMP Response Element-Binding Protein; Enzyme Activation; Enzyme Inhibitors; Imidazoles; Isoquinolines; Losartan; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Nitriles; Phosphorylation; Phosphoserine; Protein Processing, Post-Translational; Proto-Oncogene Proteins pp60(c-src); Pyridines; Receptor, Angiotensin, Type 1; Receptors, Angiotensin; Ribosomal Protein S6 Kinases; src-Family Kinases; Sulfonamides

2001
Angiotensin II increases Pax-2 expression in fetal kidney cells via the AT2 receptor.
    Journal of the American Society of Nephrology : JASN, 2004, Volume: 15, Issue:6

    Topics: Angiotensin II; Animals; Anthracenes; Blotting, Western; Cells, Cultured; DNA-Binding Proteins; Dose-Response Relationship, Drug; Enzyme Inhibitors; Fibroblasts; Flavonoids; Genistein; Imidazoles; Kidney; Losartan; Mice; Microscopy, Fluorescence; Onium Compounds; PAX2 Transcription Factor; Phosphorylation; Plasmids; Pyridines; Receptors, Angiotensin; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Time Factors; Transcription Factors; Tyrphostins; Up-Regulation

2004
Long-term regulation of vacuolar H(+)-ATPase by angiotensin II in proximal tubule cells.
    Pflugers Archiv : European journal of physiology, 2009, Volume: 458, Issue:5

    Topics: Ammonium Chloride; Androstadienes; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Buffers; Cell Line, Transformed; Cell Membrane; Cycloheximide; Dactinomycin; Epithelial Cells; Gene Expression; Genistein; Hydrogen-Ion Concentration; Imidazoles; Kidney Tubules, Proximal; Losartan; p38 Mitogen-Activated Protein Kinases; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Protein Kinase Inhibitors; Protein Subunits; Protein Transport; Protein-Tyrosine Kinases; Pyridines; Rats; Time Factors; Up-Regulation; Vacuolar Proton-Translocating ATPases; Wortmannin

2009
Angiotensin II induces the expression of c-reactive protein via MAPK-dependent signal pathway in U937 macrophages.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2011, Volume: 27, Issue:1

    Topics: Acetylcysteine; Angiotensin II; Antihypertensive Agents; C-Reactive Protein; Flavonoids; Humans; Imidazoles; Losartan; Macrophages; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Proline; Pyridines; Thiocarbamates; U937 Cells

2011
Regulation of peroxisome proliferator-activated receptor-γ by angiotensin II via transforming growth factor-β1-activated p38 mitogen-activated protein kinase in aortic smooth muscle cells.
    Arteriosclerosis, thrombosis, and vascular biology, 2012, Volume: 32, Issue:2

    Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Aorta; Cells, Cultured; Enzyme Inhibitors; Histone Deacetylases; Imidazoles; Losartan; Male; Mice; Mice, Inbred C57BL; Models, Animal; Muscle, Smooth, Vascular; p38 Mitogen-Activated Protein Kinases; PPAR gamma; Pyridines; Receptor, Angiotensin, Type 1; RNA, Messenger; RNA, Small Interfering; Transforming Growth Factor beta1

2012
Angiotensin II produces nociceptive behavior through spinal AT1 receptor-mediated p38 mitogen-activated protein kinase activation in mice.
    Molecular pain, 2013, Jul-31, Volume: 9

    Topics: Angiotensin II; Animals; Imidazoles; Losartan; Male; MAP Kinase Signaling System; Mice; p38 Mitogen-Activated Protein Kinases; Pyridines; Receptor, Angiotensin, Type 1; Spinal Cord

2013
A novel role of angiotensin II in epidermal cell lineage determination: Angiotensin II promotes the differentiation of mesenchymal stem cells into keratinocytes through the p38 MAPK, JNK and JAK2 signalling pathways.
    Experimental dermatology, 2019, Volume: 28, Issue:1

    Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin II Type 2 Receptor Blockers; Animals; Anthracenes; Bone Marrow Cells; Cell Differentiation; Cell Lineage; Cell Movement; Imidazoles; Janus Kinase 2; Janus Kinases; Keratinocytes; Losartan; Male; MAP Kinase Signaling System; Mesenchymal Stem Cells; p38 Mitogen-Activated Protein Kinases; Protein Kinase Inhibitors; Pyridines; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Tyrphostins

2019