losartan has been researched along with sb 203580 in 9 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 5 (55.56) | 29.6817 |
2010's | 4 (44.44) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
McCulloch, CA; Seth, A; Wang, J | 1 |
Bobrovskaya, L; Dunkley, PR; Leal, RB; Odell, A | 1 |
Bevilaqua, LR; Cammarota, M; Dunkley, PR; Rostas, JA | 1 |
Ingelfinger, JR; Moini, B; Zhang, SL | 1 |
Carraro-Lacroix, LR; Girardi, AC; Malnic, G | 1 |
Han, C; Li, M; Liu, J; Mao, J; Pang, X; Wang, B | 1 |
Bruemmer, D; Daugherty, A; Golledge, J; Heywood, EB; Subramanian, V | 1 |
Ishikawa, M; Kanno, S; Nakagawasai, O; Nemoto, W; Tadano, T; Tan-No, K; Yaoita, F; Yomogida, S | 1 |
Jiang, X; Li, SH; Li, ZH; Liang, JX; Liao, X; Liu, HW; Wu, F; Wu, YD; Xu, Y; Yan, JX | 1 |
9 other study(ies) available for losartan and sb 203580
Article | Year |
---|---|
Force regulates smooth muscle actin in cardiac fibroblasts.
Topics: Actins; Angiotensin II; Animals; Antihypertensive Agents; Cells, Cultured; Colchicine; Enzyme Inhibitors; Fibroblasts; Gene Expression; Imidazoles; Losartan; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Myocardium; p38 Mitogen-Activated Protein Kinases; Pyridines; Rats; Rats, Sprague-Dawley; RNA, Messenger; Stress, Mechanical; Vasoconstrictor Agents | 2000 |
Tyrosine hydroxylase phosphorylation in bovine adrenal chromaffin cells: the role of MAPKs after angiotensin II stimulation.
Topics: Adrenal Glands; Angiotensin II; Angiotensin Receptor Antagonists; Animals; Anisomycin; Antihypertensive Agents; Butadienes; Cattle; Chromaffin Cells; Chromatography, High Pressure Liquid; Enzyme Inhibitors; Flavonoids; Imidazoles; Immunoblotting; Losartan; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Nitriles; Phosphorylation; Phosphoserine; Protein Synthesis Inhibitors; Pyridines; Receptors, Angiotensin; Time Factors; Tyrosine 3-Monooxygenase | 2001 |
Angiotensin II promotes the phosphorylation of cyclic AMP-responsive element binding protein (CREB) at Ser133 through an ERK1/2-dependent mechanism.
Topics: Adrenal Medulla; Angiotensin II; Angiotensin Receptor Antagonists; Animals; Benzylamines; Butadienes; Cattle; Cells, Cultured; Cyclic AMP; Cyclic AMP Response Element-Binding Protein; Enzyme Activation; Enzyme Inhibitors; Imidazoles; Isoquinolines; Losartan; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Nitriles; Phosphorylation; Phosphoserine; Protein Processing, Post-Translational; Proto-Oncogene Proteins pp60(c-src); Pyridines; Receptor, Angiotensin, Type 1; Receptors, Angiotensin; Ribosomal Protein S6 Kinases; src-Family Kinases; Sulfonamides | 2001 |
Angiotensin II increases Pax-2 expression in fetal kidney cells via the AT2 receptor.
Topics: Angiotensin II; Animals; Anthracenes; Blotting, Western; Cells, Cultured; DNA-Binding Proteins; Dose-Response Relationship, Drug; Enzyme Inhibitors; Fibroblasts; Flavonoids; Genistein; Imidazoles; Kidney; Losartan; Mice; Microscopy, Fluorescence; Onium Compounds; PAX2 Transcription Factor; Phosphorylation; Plasmids; Pyridines; Receptors, Angiotensin; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Time Factors; Transcription Factors; Tyrphostins; Up-Regulation | 2004 |
Long-term regulation of vacuolar H(+)-ATPase by angiotensin II in proximal tubule cells.
Topics: Ammonium Chloride; Androstadienes; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Buffers; Cell Line, Transformed; Cell Membrane; Cycloheximide; Dactinomycin; Epithelial Cells; Gene Expression; Genistein; Hydrogen-Ion Concentration; Imidazoles; Kidney Tubules, Proximal; Losartan; p38 Mitogen-Activated Protein Kinases; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Protein Kinase Inhibitors; Protein Subunits; Protein Transport; Protein-Tyrosine Kinases; Pyridines; Rats; Time Factors; Up-Regulation; Vacuolar Proton-Translocating ATPases; Wortmannin | 2009 |
Angiotensin II induces the expression of c-reactive protein via MAPK-dependent signal pathway in U937 macrophages.
Topics: Acetylcysteine; Angiotensin II; Antihypertensive Agents; C-Reactive Protein; Flavonoids; Humans; Imidazoles; Losartan; Macrophages; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Proline; Pyridines; Thiocarbamates; U937 Cells | 2011 |
Regulation of peroxisome proliferator-activated receptor-γ by angiotensin II via transforming growth factor-β1-activated p38 mitogen-activated protein kinase in aortic smooth muscle cells.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Aorta; Cells, Cultured; Enzyme Inhibitors; Histone Deacetylases; Imidazoles; Losartan; Male; Mice; Mice, Inbred C57BL; Models, Animal; Muscle, Smooth, Vascular; p38 Mitogen-Activated Protein Kinases; PPAR gamma; Pyridines; Receptor, Angiotensin, Type 1; RNA, Messenger; RNA, Small Interfering; Transforming Growth Factor beta1 | 2012 |
Angiotensin II produces nociceptive behavior through spinal AT1 receptor-mediated p38 mitogen-activated protein kinase activation in mice.
Topics: Angiotensin II; Animals; Imidazoles; Losartan; Male; MAP Kinase Signaling System; Mice; p38 Mitogen-Activated Protein Kinases; Pyridines; Receptor, Angiotensin, Type 1; Spinal Cord | 2013 |
A novel role of angiotensin II in epidermal cell lineage determination: Angiotensin II promotes the differentiation of mesenchymal stem cells into keratinocytes through the p38 MAPK, JNK and JAK2 signalling pathways.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin II Type 2 Receptor Blockers; Animals; Anthracenes; Bone Marrow Cells; Cell Differentiation; Cell Lineage; Cell Movement; Imidazoles; Janus Kinase 2; Janus Kinases; Keratinocytes; Losartan; Male; MAP Kinase Signaling System; Mesenchymal Stem Cells; p38 Mitogen-Activated Protein Kinases; Protein Kinase Inhibitors; Pyridines; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Tyrphostins | 2019 |