losartan and genistein

losartan has been researched along with genistein in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (12.50)18.2507
2000's6 (75.00)29.6817
2010's1 (12.50)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Hollenberg, MD; Laniyonu, A; Saifeddine, M; Yang, SG1
Fan, YP; Puri, RN; Rattan, S1
de Champlain, J; El Midaoui, A; Laplante, MA; Wu, R1
Chen, FP; He, MX; He, SL; He, XF; Xie, QZ1
Ingelfinger, JR; Moini, B; Zhang, SL1
Anandanadesan, R; Arafat, HA; Chipitsyna, G; Gong, Q; Witkiewicz, A; Yeo, CJ1
Carraro-Lacroix, LR; Girardi, AC; Malnic, G1
Anand-Srivastava, MB; Li, Y1

Other Studies

8 other study(ies) available for losartan and genistein

ArticleYear
Distinct signal transduction pathways for angiotensin-II in guinea pig gastric smooth muscle: differential blockade by indomethacin and tyrosine kinase inhibitors.
    The Journal of pharmacology and experimental therapeutics, 1993, Volume: 264, Issue:2

    Topics: Angiotensin II; Animals; Biphenyl Compounds; Calcium; Catechols; Cyclohexanones; Dose-Response Relationship, Drug; Epidermal Growth Factor; Genistein; Guinea Pigs; Imidazoles; In Vitro Techniques; Indoles; Indomethacin; Isoflavones; Losartan; Male; Muscle, Smooth; Nitriles; Protein-Tyrosine Kinases; Pyridines; Quinacrine; Signal Transduction; Stomach; Tetrazoles; Tyrphostins

1993
Comparison of angiotensin II (Ang II) effects in the internal anal sphincter (IAS) and lower esophageal sphincter smooth muscles.
    Life sciences, 2002, Mar-22, Volume: 70, Issue:18

    Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Anal Canal; Angiotensin II; Animals; Dose-Response Relationship, Drug; Drug Combinations; Esophagus; Female; Flavonoids; Genistein; Imidazoles; Losartan; Male; Muscle Contraction; Muscle, Smooth; Nicardipine; Opossums; Pyridines; Rabbits; Species Specificity; Tyrphostins

2002
NAD(P)H oxidase activation by angiotensin II is dependent on p42/44 ERK-MAPK pathway activation in rat's vascular smooth muscle cells.
    Journal of hypertension, 2003, Volume: 21, Issue:5

    Topics: Angiotensin II; Animals; Antihypertensive Agents; Antioxidants; Aorta; Blood Pressure; Disease Models, Animal; Endothelium, Vascular; Enzyme Activation; Enzyme Inhibitors; Flavonoids; Genistein; Hypertension; Losartan; Male; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Models, Cardiovascular; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; NADPH Oxidases; Rats; Rats, Sprague-Dawley; Superoxides; Thioctic Acid; Vasoconstrictor Agents

2003
[Effect of angiotensin II on tissue factor expression in human peripheral blood monocytes and its mechanisms].
    Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi, 2003, Volume: 24, Issue:9

    Topics: Angiotensin II; Gene Expression Regulation; Genistein; Humans; Losartan; Monocytes; NF-kappa B; Protein Kinase C; Receptor, Angiotensin, Type 1; RNA, Messenger; Staurosporine; Thromboplastin

2003
Angiotensin II increases Pax-2 expression in fetal kidney cells via the AT2 receptor.
    Journal of the American Society of Nephrology : JASN, 2004, Volume: 15, Issue:6

    Topics: Angiotensin II; Animals; Anthracenes; Blotting, Western; Cells, Cultured; DNA-Binding Proteins; Dose-Response Relationship, Drug; Enzyme Inhibitors; Fibroblasts; Flavonoids; Genistein; Imidazoles; Kidney; Losartan; Mice; Microscopy, Fluorescence; Onium Compounds; PAX2 Transcription Factor; Phosphorylation; Plasmids; Pyridines; Receptors, Angiotensin; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Time Factors; Transcription Factors; Tyrphostins; Up-Regulation

2004
Angiotensin II induces vascular endothelial growth factor in pancreatic cancer cells through an angiotensin II type 1 receptor and ERK1/2 signaling.
    Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract, 2008, Volume: 12, Issue:1

    Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Blotting, Western; Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Disease Progression; Enzyme-Linked Immunosorbent Assay; Gene Expression Regulation, Neoplastic; Genistein; Humans; Imidazoles; Immunohistochemistry; Losartan; Mitogen-Activated Protein Kinase 1; Neovascularization, Pathologic; Pancreatic Neoplasms; Protein Kinase Inhibitors; Pyridines; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Reverse Transcriptase Polymerase Chain Reaction; RNA, Neoplasm; Signal Transduction; Vascular Endothelial Growth Factor A; Vasoconstrictor Agents

2008
Long-term regulation of vacuolar H(+)-ATPase by angiotensin II in proximal tubule cells.
    Pflugers Archiv : European journal of physiology, 2009, Volume: 458, Issue:5

    Topics: Ammonium Chloride; Androstadienes; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Buffers; Cell Line, Transformed; Cell Membrane; Cycloheximide; Dactinomycin; Epithelial Cells; Gene Expression; Genistein; Hydrogen-Ion Concentration; Imidazoles; Kidney Tubules, Proximal; Losartan; p38 Mitogen-Activated Protein Kinases; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Protein Kinase Inhibitors; Protein Subunits; Protein Transport; Protein-Tyrosine Kinases; Pyridines; Rats; Time Factors; Up-Regulation; Vacuolar Proton-Translocating ATPases; Wortmannin

2009
Implication of multiple signaling pathways in the regulation of angiotensin II induced enhanced expression of Giα proteins in vascular smooth muscle cells.
    Canadian journal of physiology and pharmacology, 2012, Volume: 90, Issue:8

    Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin II Type 2 Receptor Blockers; Animals; Bucladesine; Calcium; Cell Line; Chelating Agents; Dactinomycin; Drug Interactions; Egtazic Acid; Estrenes; Gallic Acid; Gene Expression Regulation; Genistein; GTP-Binding Protein alpha Subunits, Gi-Go; Imidazoles; Losartan; Nucleic Acid Synthesis Inhibitors; Protein Kinase Inhibitors; Pyridines; Pyrrolidinones; Rats; Signal Transduction; Type C Phospholipases

2012