losartan and dinoprost

losartan has been researched along with dinoprost in 20 studies

Research

Studies (20)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's6 (30.00)18.2507
2000's10 (50.00)29.6817
2010's4 (20.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Chang, RS; Chiu, AT; Leung, KH; Lotti, VJ; Roscoe, WA; Smith, RD; Timmermans, PB1
Naftolin, F; Nemeth, G; Pepperell, JR; Yamada, Y1
Bernard, S; Corriu, C; Schott, C; Stoclet, JC1
Gorczynska, E; Handelsman, DJ; Spaliviero, J1
Carey, RM; Siragy, HM1
Crkovská, J; Jirsa, M; Seráková, M; Stípek, S; Tesar, V; Vernerová, Z; Zima, T2
Broulík, PD; Jirsa, M; Tesar, V; Zima, T1
Böger, RH; Drexler, H; Forssmann, WG; Krämer, C; Luchtefeld, M; Schieffer, B; Schmidt, B; Sunkomat, J; Tsikas, D; Walden, M; Witte, J1
Braileanu, GT; Daubert, D; Hu, J; Mirando, MA; Simasko, SM; Speth, RC1
Abukhalaf, IK; Bayorh, MA; Eatman, D; Ganafa, AA; Silvestrov, N; Socci, RR1
Furukawa, T; Hayashi, M; Homma, K; Ichihara, A; Kaneshiro, Y; Kanno, Y; Saruta, T; Takemitsu, T; Takenaka, T; Yoshizawa, M1
Gottsäter, A; Ohlin, AK; Ohlin, H; Tingberg, E1
Alonso, MJ; Alvarez, Y; Beltrán, A; Briones, AM; García-Redondo, A; Hernanz, R; Pérez-Girón, JV; Salaices, M1
Chenevard, R; Flammer, AJ; Gay, S; Hermann, F; Hürlimann, D; Lehmann, R; Lüscher, TF; Neidhart, M; Noll, G; Riesen, W; Ruschitzka, F; Schwegler, B; Sudano, I; Wiesli, P1
Rossi, GP1
Ishida, K; Kamata, K; Kobayashi, T; Matsumoto, T; Taguchi, K1
Cheng, GJ; Hu, GY; Huang, L; Mei, WJ; Peng, ZZ; Qin, J; Tao, LJ; Xie, YY; Yuan, QJ; Yuan, XN1
Cabassi, A; Cherney, DZI; Crocamo, A; Lazzeroni, D; Lytvyn, Y; Montanari, A; Musiari, L; Pelà, G1

Trials

5 trial(s) available for losartan and dinoprost

ArticleYear
Angiotensin II receptor-independent antiinflammatory and antiaggregatory properties of losartan: role of the active metabolite EXP3179.
    Circulation research, 2002, Apr-19, Volume: 90, Issue:7

    Topics: Angiotensin II; Angiotensin Receptor Antagonists; Arachidonic Acid; Biotransformation; Cells, Cultured; Cyclooxygenase 2; Dinoprost; Drug Design; Endothelium, Vascular; Enzyme Activation; Female; Humans; Hypertension; Imidazoles; Inflammation; Intercellular Adhesion Molecule-1; Isoenzymes; Lipopolysaccharides; Losartan; Male; Membrane Proteins; Middle Aged; Platelet Aggregation; Prostaglandin-Endoperoxide Synthases; Receptor, Angiotensin, Type 1; Receptors, Angiotensin; RNA, Messenger; Tetrazoles; Thromboxane A2; Up-Regulation; Vasoconstrictor Agents

2002
Low doses of losartan and trandolapril improve arterial stiffness in hemodialysis patients.
    American journal of kidney diseases : the official journal of the National Kidney Foundation, 2005, Volume: 45, Issue:5

    Topics: Aged; Anemia; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Blood Pressure; C-Reactive Protein; Cardiovascular Diseases; Cholesterol; Comorbidity; Dinoprost; Drug Therapy, Combination; Erythropoietin; Female; Follow-Up Studies; Hematocrit; Humans; Hyperlipidemias; Indoles; Kidney Failure, Chronic; Lipids; Lipoproteins; Lipoproteins, LDL; Losartan; Male; Middle Aged; Prospective Studies; Renal Dialysis; Treatment Outcome; Vascular Resistance

2005
Lipid peroxidation is not increased in heart failure patients on modern pharmacological therapy.
    International journal of cardiology, 2006, Oct-10, Volume: 112, Issue:3

    Topics: Adolescent; Adult; Aged; Aged, 80 and over; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Atrial Natriuretic Factor; Captopril; Comorbidity; Delayed-Action Preparations; Dinoprost; Female; Heart Failure; Hemodynamics; Humans; Isosorbide Dinitrate; Lipid Peroxidation; Losartan; Male; Malondialdehyde; Middle Aged; Myocardial Infarction; Natriuretic Peptide, Brain; Nitric Oxide Donors; Oxidative Stress; Ramipril; Stroke Volume; Ultrasonography; Ventricular Dysfunction, Left

2006
Effect of losartan, compared with atenolol, on endothelial function and oxidative stress in patients with type 2 diabetes and hypertension.
    Journal of hypertension, 2007, Volume: 25, Issue:4

    Topics: Antihypertensive Agents; Atenolol; Blood Pressure; Brachial Artery; Cross-Over Studies; Diabetes Mellitus, Type 2; Dinoprost; Double-Blind Method; Endothelium, Vascular; Female; Humans; Hypertension; Insulin Resistance; Losartan; Male; Middle Aged; Oxidative Stress; Regional Blood Flow; Research Design; Treatment Outcome; Vasodilation

2007
Calcium channel blockade blunts the renal effects of acute nitric oxide synthase inhibition in healthy humans.
    American journal of physiology. Renal physiology, 2017, 05-01, Volume: 312, Issue:5

    Topics: Adult; Arterial Pressure; Biomarkers; Calcium Channel Blockers; Dihydropyridines; Dinoprost; Enzyme Inhibitors; Female; Glomerular Filtration Rate; Healthy Volunteers; Hemodynamics; Humans; Infusions, Intravenous; Kidney; Losartan; Male; Natriuresis; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitrobenzenes; Oxidative Stress; Piperazines; Renal Circulation; Time Factors

2017

Other Studies

15 other study(ies) available for losartan and dinoprost

ArticleYear
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
AT1 receptors mediate the release of prostaglandins in porcine smooth muscle cells and rat astrocytes.
    American journal of hypertension, 1992, Volume: 5, Issue:9

    Topics: Angiotensin II; Angiotensin Receptor Antagonists; Animals; Arachidonic Acids; Astrocytes; Biphenyl Compounds; Calcimycin; Cattle; Cells, Cultured; Dinoprost; Dose-Response Relationship, Drug; Endothelium, Vascular; Epoprostenol; Glioma; Imidazoles; Iodine Radioisotopes; Losartan; Macrophages; Male; Muscle, Smooth, Vascular; Prostaglandins; Pyridines; Radioimmunoassay; Radioligand Assay; Rats; Rats, Sprague-Dawley; Receptors, Angiotensin; Swine; Tetrazoles; Thromboxanes; Tumor Cells, Cultured

1992
The type 1 angiotensin-II receptor mediates intracellular calcium mobilization in rat luteal cells.
    Endocrinology, 1993, Volume: 133, Issue:4

    Topics: Adenosine Triphosphatases; Angiotensin II; Angiotensin Receptor Antagonists; Animals; Biological Transport; Biphenyl Compounds; Calcium; Corpus Luteum; Culture Media; Dinoprost; Endoplasmic Reticulum; Female; Imidazoles; Intracellular Membranes; Losartan; Osmolar Concentration; Pyridines; Rats; Receptors, Angiotensin; Terpenes; Tetrazoles; Thapsigargin

1993
Effects of losartan on contractile responses of conductance and resistance arteries from rats.
    Journal of cardiovascular pharmacology, 1995, Volume: 26, Issue:5

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Angiotensin II; Angiotensin Receptor Antagonists; Animals; Antihypertensive Agents; Aorta; Biphenyl Compounds; Dinoprost; Imidazoles; In Vitro Techniques; Losartan; Male; Mesenteric Arteries; Prostaglandin Endoperoxides, Synthetic; Rats; Rats, Wistar; Tetrazoles; Thromboxane A2; Vasoconstriction

1995
Cyclic adenosine 3',5'-monophosphate-independent regulation of cytosolic calcium in Sertoli cells.
    Endocrinology, 1996, Volume: 137, Issue:6

    Topics: Angiotensin II; Angiotensin Receptor Antagonists; Animals; Atrial Natriuretic Factor; Biphenyl Compounds; Calcium; Calcium Channel Blockers; Cyclic AMP; Cytosol; Dinoprost; Enzyme Inhibitors; Imidazoles; Isoquinolines; Kinetics; Losartan; Male; Protein Kinase C; Pyridines; Rats; Rats, Wistar; Sertoli Cells; Sulfonamides; Terpenes; Tetrazoles; Thapsigargin; Vasopressins

1996
The subtype 2 angiotensin receptor regulates renal prostaglandin F2 alpha formation in conscious rats.
    The American journal of physiology, 1997, Volume: 273, Issue:3 Pt 2

    Topics: Angiotensin II; Angiotensin Receptor Antagonists; Animals; Biphenyl Compounds; Blood Pressure; Diet, Sodium-Restricted; Dinoprost; Dinoprostone; Extracellular Space; Female; Homeostasis; Imidazoles; Kidney; Losartan; Microdialysis; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptors, Angiotensin; Sodium, Dietary; Tetrazoles

1997
[Effect of losartan and enalapril on urinary excretion of 8-isoprostane in experimental nephrotic syndrome].
    Casopis lekaru ceskych, 1999, Oct-20, Volume: 138, Issue:18

    Topics: Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Dinoprost; Doxorubicin; Eicosanoids; Enalapril; F2-Isoprostanes; Losartan; Male; Nephrotic Syndrome; Proteinuria; Rats; Rats, Wistar

1999
Impact of antihypertensive therapy on the skeleton: effects of enalapril and AT1 receptor antagonist losartan in female rats.
    Physiological research, 2001, Volume: 50, Issue:4

    Topics: 6-Ketoprostaglandin F1 alpha; Angiotensin Receptor Antagonists; Animals; Antihypertensive Agents; Bone Density; Dinoprost; Dinoprostone; Enalapril; F2-Isoprostanes; Female; Femur; Losartan; Proteinuria; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Thromboxane B2

2001
Influence of losartan and enalapril on urinary excretion of 8-isoprostane in experimental nephrotic syndrome.
    Medical science monitor : international medical journal of experimental and clinical research, 2002, Volume: 8, Issue:2

    Topics: Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Dinoprost; Enalapril; F2-Isoprostanes; Losartan; Nephrotic Syndrome; Rats

2002
Angiotensin II increases intracellular calcium concentration in pig endometrial stromal cells through type 1 angiotensin receptors, but does not stimulate phospholipase C activity or prostaglandin F2alpha secretion.
    Reproduction, fertility, and development, 2002, Volume: 14, Issue:3-4

    Topics: Angiotensin II; Angiotensin Receptor Antagonists; Animals; Calcium; Dinoprost; Endometrium; Female; Losartan; Oxytocin; Phospholipases; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptors, Angiotensin; Stromal Cells; Swine

2002
Effect of losartan on oxidative stress-induced hypertension in Sprague-Dawley rats.
    American journal of hypertension, 2003, Volume: 16, Issue:5 Pt 1

    Topics: Aldosterone; Angiotensin II; Animals; Antihypertensive Agents; Aorta; Biomarkers; Blood Pressure; Buthionine Sulfoximine; Cyclic AMP; Cyclic GMP; Dinoprost; Disease Models, Animal; Enzyme Inhibitors; Epoprostenol; F2-Isoprostanes; Glutathione; Heart Rate; Hypertension; Kidney; Losartan; Male; Models, Cardiovascular; Nitric Oxide; Oxidative Stress; Rats; Rats, Sprague-Dawley; Superoxides; Thromboxane A2; Treatment Outcome

2003
Losartan reduces the increased participation of cyclooxygenase-2-derived products in vascular responses of hypertensive rats.
    The Journal of pharmacology and experimental therapeutics, 2007, Volume: 321, Issue:1

    Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Antihypertensive Agents; Antioxidants; Blotting, Western; Cyclooxygenase 2; Desoxycorticosterone; Dinoprost; Hypertension; In Vitro Techniques; Isometric Contraction; Losartan; Male; Malondialdehyde; Muscle Contraction; Muscle, Smooth, Vascular; Prostaglandins I; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger

2007
Losartan metabolite EXP3179: an AT1-receptor-independent treatment strategy for patients with the metabolic syndrome?
    Hypertension (Dallas, Tex. : 1979), 2009, Volume: 54, Issue:4

    Topics: Angiotensin II Type 1 Receptor Blockers; Cyclooxygenase 2 Inhibitors; Dinoprost; Humans; Intercellular Adhesion Molecule-1; Losartan; Metabolic Syndrome; PPAR gamma; Receptor, Angiotensin, Type 1; Thromboxane A2

2009
Mechanisms underlying altered extracellular nucleotide-induced contractions in mesenteric arteries from rats in later-stage type 2 diabetes: effect of ANG II type 1 receptor antagonism.
    American journal of physiology. Heart and circulatory physiology, 2011, Volume: 301, Issue:5

    Topics: Adenosine Triphosphate; Angiotensin II Type 1 Receptor Blockers; Animals; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase Inhibitors; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Dinoprost; Dinoprostone; Disease Models, Animal; Group IV Phospholipases A2; Losartan; Male; Membrane Proteins; Mesenteric Artery, Superior; Phosphorylation; Purinergic P2 Receptor Antagonists; Rats; Rats, Wistar; Receptors, Purinergic P2; Receptors, Purinergic P2Y2; Signal Transduction; Superoxides; Uridine Triphosphate; Vasoconstriction

2011
Fluorofenidone inhibits nicotinamide adeninedinucleotide phosphate oxidase via PI3K/Akt pathway in the pathogenesis of renal interstitial fibrosis.
    Nephrology (Carlton, Vic.), 2013, Volume: 18, Issue:10

    Topics: Angiotensin II; Animals; Antioxidants; Cell Line; Class Ia Phosphatidylinositol 3-Kinase; Collagen Type I; Dinoprost; Disease Models, Animal; Enzyme Inhibitors; Fibrosis; Kidney Diseases; Kidney Tubules; Lipid Peroxidation; Losartan; Male; Membrane Glycoproteins; NADPH Oxidase 2; NADPH Oxidases; Oxidative Stress; Phosphorylation; Proto-Oncogene Proteins c-akt; Pyridones; Rats; Rats, Sprague-Dawley; Signal Transduction; Transfection; Ureteral Obstruction

2013