loratadine and sulpiride

loratadine has been researched along with sulpiride in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (75.00)29.6817
2010's0 (0.00)24.3611
2020's1 (25.00)2.80

Authors

AuthorsStudies
Caron, G; Ermondi, G1
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Bleich, S; Gulbins, E; Kornhuber, J; Reichel, M; Terfloth, L; Tripal, P; Wiltfang, J1
Badawi, AM; Elrehany, M; Maher, SA; Mansour, HF; Mohamad, SA; Safwat, MA1

Other Studies

4 other study(ies) available for loratadine and sulpiride

ArticleYear
Calculating virtual log P in the alkane/water system (log P(N)(alk)) and its derived parameters deltalog P(N)(oct-alk) and log D(pH)(alk).
    Journal of medicinal chemistry, 2005, May-05, Volume: 48, Issue:9

    Topics: 1-Octanol; Alkanes; Hydrogen-Ion Concentration; Least-Squares Analysis; Mathematics; Models, Chemical; Models, Molecular; Solvents; Water

2005
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model.
    Journal of medicinal chemistry, 2008, Jan-24, Volume: 51, Issue:2

    Topics: Algorithms; Animals; Cell Line; Cell Line, Tumor; Chemical Phenomena; Chemistry, Physical; Enzyme Inhibitors; Humans; Hydrogen-Ion Concentration; Molecular Conformation; Quantitative Structure-Activity Relationship; Rats; Sphingomyelin Phosphodiesterase

2008
A novel nasal co-loaded loratadine and sulpiride nanoemulsion with improved downregulation of TNF-α, TGF-β and IL-1 in rabbit models of ovalbumin-induced allergic rhinitis.
    Drug delivery, 2021, Volume: 28, Issue:1

    Topics: Administration, Intranasal; Animals; Calorimetry, Differential Scanning; Disease Models, Animal; Dopamine Antagonists; Drug Combinations; Drug Liberation; Emulsions; Glycerol; Glycine max; Histamine H1 Antagonists, Non-Sedating; In Vitro Techniques; Interleukin-1; Lecithins; Loratadine; Nanostructures; Nasal Mucosa; Olive Oil; Ovalbumin; Paranasal Sinuses; Polysorbates; Rabbits; Rhinitis, Allergic; Sodium Cholate; Spectroscopy, Fourier Transform Infrared; Sulpiride; Surface-Active Agents; Transforming Growth Factor beta; Tumor Necrosis Factor-alpha

2021