loperamide and zalcitabine

loperamide has been researched along with zalcitabine in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (25.00)18.2507
2000's0 (0.00)29.6817
2010's2 (50.00)24.3611
2020's1 (25.00)2.80

Authors

AuthorsStudies
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Benet, LZ; Brouwer, KL; Chu, X; Dahlin, A; Evers, R; Fischer, V; Giacomini, KM; Hillgren, KM; Hoffmaster, KA; Huang, SM; Ishikawa, T; Keppler, D; Kim, RB; Lee, CA; Niemi, M; Polli, JW; Sugiyama, Y; Swaan, PW; Tweedie, DJ; Ware, JA; Wright, SH; Yee, SW; Zamek-Gliszczynski, MJ; Zhang, L1
Dranchak, PK; Huang, R; Inglese, J; Lamy, L; Oliphant, E; Queme, B; Tao, D; Wang, Y; Xia, M1
Enigbokan, MA; Preston, J; Thompson, JO; West, D1

Reviews

1 review(s) available for loperamide and zalcitabine

ArticleYear
Membrane transporters in drug development.
    Nature reviews. Drug discovery, 2010, Volume: 9, Issue:3

    Topics: Animals; Computer Simulation; Decision Trees; Drug Approval; Drug Discovery; Drug Evaluation, Preclinical; Drug Interactions; Humans; Membrane Transport Proteins; Mice; Mice, Knockout; Prescription Drugs

2010

Other Studies

3 other study(ies) available for loperamide and zalcitabine

ArticleYear
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
    Disease models & mechanisms, 2023, 03-01, Volume: 16, Issue:3

    Topics: Animals; Caenorhabditis elegans; Drug Discovery; High-Throughput Screening Assays; Humans; Proteomics; Small Molecule Libraries

2023
Calmodulin inhibitors and calcium channel blockers influence dideoxycytidine renal excretion.
    Cellular and molecular biology (Noisy-le-Grand, France), 1995, Volume: 41 Suppl 1

    Topics: Animals; Calcium; Calcium Channel Blockers; Calcium-Transporting ATPases; Calmodulin; Kidney Tubules; Loperamide; Male; Metabolic Clearance Rate; Mice; Trifluoperazine; Verapamil; Zalcitabine

1995