lometrexol has been researched along with 5-methyltetrahydrofolate* in 2 studies
2 other study(ies) available for lometrexol and 5-methyltetrahydrofolate
Article | Year |
---|---|
The role of dietary folate in modulation of folate receptor expression, folylpolyglutamate synthetase activity and the efficacy and toxicity of lometrexol.
We have studied the molecular effects of a LFD in a murine model in order to better define the biochemical changes associated with folate deficiency. In addition, we have demonstrated the effect of a LFD on the pharmacokinetic profile and therapeutic activity and toxicity of lometrexol. These studies showed increased density of FR in tumors implanted in LFD mice and a decrease in the affinity of these receptors for folic acid. The results suggest that tumors can compensate for low folate bioavailability by up-regulation of a second FR with slightly lower affinity for folic acid. The higher density of this FR would provide greater capacity for garnering serum folate. FPGS activity increased in several tumors and liver and kidney of LFD mice. The increase in this enzyme activity would result in enhanced polyglutamation of folates and classical antifolates and thus increased cellular retention. Consistent with these changes in liver FPGS, mice injected i.v. with a single dose of lometrexol accumulated significantly more drug in liver and tumors of LFD animals compared to SD mice. Also, higher liver concentrations of lometrexol persisted longer in LFD mice. Polyglutamate analysis showed that longer polyglutamate forms appeared earlier in liver of LFD mice. After 7 days, longer polyglutamyl forms were recovered from liver of LFD mice (octa- and hepta-glutamyl lometrexol) compared to those on SD. A comparison of the efficacy and toxicity of lometrexol in C3H mammary tumor-bearing mice showed that in mice on LFD, lometrexol treatment produced a delayed toxicity with an LD50 of 0.1-0.3 mg/kg, a 3000-fold increase in lethality compared to SD mice. Supplementation of mice with folic acid restored anti-tumor activity and increased the therapeutic dose-range over which efficacy could be assessed. These studies support the use of folic acid supplementation for cancer patients treated with antifolate therapy in order to prevent the biochemical changes in FR and FPGS associated with folate deficiency, prevent delayed toxicity to GARFT inhibitors and enhance the therapeutic potential of this class of drugs. Topics: Acyltransferases; Animals; Carrier Proteins; Diet; Enzyme Inhibitors; Folate Receptors, GPI-Anchored; Folic Acid; Hydroxymethyl and Formyl Transferases; Kidney; Liver; Mice; Neoplasms; Peptide Synthases; Phosphoribosylglycinamide Formyltransferase; Polyglutamic Acid; Protein Binding; Receptors, Cell Surface; Tetrahydrofolates; Tumor Cells, Cultured | 1996 |
Differential stereospecificities and affinities of folate receptor isoforms for folate compounds and antifolates.
Two membrane folate receptor (MFR) isoforms are present in human tissues i.e. MFR-1 (e.g. placenta) and MFR-2 (e.g. placenta, KB cells, CaCo-2 cells). MFR-1 was expressed in COS-1 cells and the resulting protein had the same polypeptide molecular weight as the native protein. The affinities of (6S) and (6R) diastereoisomers of N5-methyltetrahydrofolate, N5-formyltetrahydrofolate, and 5,10-dideazatetrahydrofolate as well as folic acid and methotrexate to MFR-1, MFR-2 and placental MFR (MFR-1 plus MFR-2) were determined in terms of the Ki values for their competitive inhibition of the binding of [3H]folic acid to these proteins. The results indicated a striking difference in the stereospecificity of MFR-1 and MFR-2 for reduced folate coenzymes; MFR-2 preferentially bound to the physiological (6S) diastereoisomers and MFR-1 bound preferentially to the unphysiological (6R) diastereoisomers, while dideazatetrahydrofolate did not show significant stereospecificity for MFR-1. Furthermore, MFR-2 displayed significantly (2- to 100-fold) greater affinities for all the compounds tested compared to MFR-1. Purified placental MFR, a natural source of MFR-1 which contains variable amounts of MFR-2, showed intermediate Ki values for the compounds tested compared with MFR-1 and MFR-2 and stereospecificities similar to MFR-1. These observations demonstrate striking differences in the ligand binding sites of MFR-1 and MFR-2 which could potentially be exploited in the design of MFR isoform specific antifolates. Topics: Animals; Binding, Competitive; Carrier Proteins; DNA; Female; Folate Receptors, GPI-Anchored; Folic Acid; Folic Acid Antagonists; Haplorhini; Humans; KB Cells; Kinetics; Leucovorin; Methotrexate; Placenta; Receptors, Cell Surface; Stereoisomerism; Tetrahydrofolates | 1992 |