Page last updated: 2024-08-25

ljc 10627 and cefepime

ljc 10627 has been researched along with cefepime in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's5 (83.33)29.6817
2010's1 (16.67)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Jolivette, LJ; Ward, KW1
Lombardo, F; Obach, RS; Waters, NJ1
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV1
Abendroth, J; Atkins, K; Boyer, SH; Clifton, MC; Dudley, MN; Durso, S; Griffith, DC; Hecker, SJ; Hirst, GC; King, P; Lomovskaya, O; Loutit, JS; Morgan, EE; Potts, KT; Raymond, A; Reddy, KR; Sabet, M; Sun, D; Tarazi, Z; Totrov, M; Tsivkovski, R1
Endo, H; Jinbo, K; Nishinari, C; Suzuki, Y; Tamura, C1
Hashikita, G; Kawakami, S; Kobayashi, S; Maesaki, S; Nagasawa, M; Okabe, T; Sasaki, K; Shibuya, S; Suzuki, N; Takayama, S; Uchida, T; Watanabe, M; Yamaguchi, T1

Other Studies

6 other study(ies) available for ljc 10627 and cefepime

ArticleYear
Extrapolation of human pharmacokinetic parameters from rat, dog, and monkey data: Molecular properties associated with extrapolative success or failure.
    Journal of pharmaceutical sciences, 2005, Volume: 94, Issue:7

    Topics: Algorithms; Animals; Dogs; Haplorhini; Humans; Pharmaceutical Preparations; Pharmacokinetics; Rats; Species Specificity; Tissue Distribution

2005
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Physicochemical determinants of human renal clearance.
    Journal of medicinal chemistry, 2009, Aug-13, Volume: 52, Issue:15

    Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight

2009
Discovery of a Cyclic Boronic Acid β-Lactamase Inhibitor (RPX7009) with Utility vs Class A Serine Carbapenemases.
    Journal of medicinal chemistry, 2015, May-14, Volume: 58, Issue:9

    Topics: Animals; Anti-Bacterial Agents; Bacterial Proteins; beta-Lactamase Inhibitors; beta-Lactamases; Boronic Acids; Carbapenems; Crystallography, X-Ray; Drug Resistance, Bacterial; Drug Synergism; Gram-Negative Bacteria; Heterocyclic Compounds, 1-Ring; Mice; Microbial Sensitivity Tests; Models, Molecular; Rats; Stereoisomerism; Structure-Activity Relationship

2015
[Antimicrobial activities of carbapenems and fourth generation cephems against clinically isolated strains].
    The Japanese journal of antibiotics, 2001, Volume: 54, Issue:9

    Topics: Bacteria; Carbapenems; Cefepime; Cefozopran; Cephalosporins; Imipenem; Meropenem; Thienamycins

2001
[The combination effects of antibacterial agents against clinical isolated multiple-drug resistant Pseudomonas aeruginosa].
    The Japanese journal of antibiotics, 2006, Volume: 59, Issue:1

    Topics: Amikacin; Anti-Bacterial Agents; Aztreonam; Cefepime; Cefoperazone; Cephalosporins; Ciprofloxacin; Drug Combinations; Drug Resistance, Multiple, Bacterial; Drug Therapy, Combination; Fluoroquinolones; Humans; Meropenem; Microbial Sensitivity Tests; Oxazines; Penicillanic Acid; Piperacillin; Pseudomonas aeruginosa; Sulbactam; Tazobactam; Thienamycins

2006