lithium-chloride has been researched along with potassium-bromide* in 2 studies
2 other study(ies) available for lithium-chloride and potassium-bromide
Article | Year |
---|---|
Investigation of the role of electrolytes and non-electrolytes on the cloud point and dye solubilization in antidepressant drug imipramine hydrochloride solutions.
Antidepressant drug imipramine hydrochloride (IMP) is amphiphilic which shows surfactant-like behavior in aqueous solutions. We have studied the effect of adding electrolytes and non-electrolytes on the micellar behavior of IMP by making cloud point (CP) and dye solubilization measurements. The CP of a 100mM IMP solution (prepared in 10mM sodium phosphate (SP) buffer) was found to decrease with increasing pH, both in the absence as well as presence of added salts. Increase in pH increased the visible absorbance of Sudan III dye solubilized in the drug micelles, implying micellar growth. Addition of increasing amounts of salts to 100mM IMP solutions (at pH 6.7) caused continuous increase in CP due to micellar growth. On the basis of these studies, the binding-effect orders of counter- and co-ions have been deduced, respectively, as: Br(-)>Cl(-)>F(-) and Li(+) Topics: Azo Compounds; Bromides; Coloring Agents; Electrolytes; Emulsions; Hydrogen-Ion Concentration; Imipramine; Lithium Chloride; Lithium Compounds; Micelles; Potassium Chloride; Potassium Compounds; Quaternary Ammonium Compounds; Sodium Chloride; Sodium Compounds; Sodium Fluoride; Solubility; Solutions; Thiourea; Urea | 2008 |
A calorimetric characterization of the salt dependence of the stability of the GCN4 leucine zipper.
The effects of different salts (LiCl, NaCl, ChoCl, KF, KCl, and KBr) on the structural stability of a 33-residue peptide corresponding to the leucine zipper region of GCN4 have been studied by high-sensitivity differential scanning calorimetry. These experiments have allowed an estimation of the salt dependence of the thermodynamic parameters that define the stability of the coiled coil. Independent of the nature of the salt, a destabilization of the coiled coil is always observed upon increasing salt concentration up to a maximum of approximately 0.5 M, depending on the specific cation or anion. At higher salt concentrations, this effect is reversed and a stabilization of the leucine zipper is observed. The effect of salt concentration is primarily entropic, judging from the lack of a significant salt dependence of the transition enthalpy. The salt dependence of the stability of the peptide is complex, suggesting the presence of specific salt effects at high salt concentrations in addition to the nonspecific electrostatic effects that are prevalent at lower salt concentrations. The data is consistent with the existence of specific interactions between anions and peptide with an affinity that follows a reverse size order (F- > Cl- > Br-). Under all conditions studied, the coiled coil undergoes reversible thermal unfolding that can be well represented by a reaction of the form N2<==>2U, indicating that the unfolding is a two-state process in which the helices are only stable when they are in the coiled coil conformation. Topics: Anions; Bromides; Calorimetry, Differential Scanning; Cations; Choline; DNA-Binding Proteins; Drug Stability; Fluorides; Fungal Proteins; Leucine Zippers; Lithium Chloride; Macromolecular Substances; Potassium Chloride; Potassium Compounds; Protein Folding; Protein Kinases; Saccharomyces cerevisiae Proteins; Salts; Sodium Chloride; Thermodynamics | 1995 |