lithium-chloride has been researched along with diisopropylamine* in 6 studies
6 other study(ies) available for lithium-chloride and diisopropylamine
Article | Year |
---|---|
Pseudophedrine-Derived Myers Enolates: Structures and Influence of Lithium Chloride on Reactivity and Mechanism.
The structures and reactivities of pseudoephedrine-derived dianionic Myers enolates are examined. A combination of NMR and IR spectroscopic, crystallographic, and computational data reveal that the homoaggregated dianions form octalithiated tetramers displaying S Topics: Crystallography, X-Ray; Ketones; Lithium; Lithium Chloride; Magnetic Resonance Spectroscopy; Models, Molecular; Molecular Structure; Organometallic Compounds; Propylamines; Stereoisomerism | 2019 |
Mechanism of Lithium Diisopropylamide-Mediated Ortholithiation of 1,4-Bis(trifluoromethyl)benzene under Nonequilibrium Conditions: Condition-Dependent Rate Limitation and Lithium Chloride-Catalyzed Inhibition.
Lithiation of 1,4-bis(trifluoromethyl)benzene with lithium diisopropylamide in tetrahydrofuran at -78 °C occurs under conditions at which the rates of aggregate exchanges are comparable to the rates of metalation. Under such nonequilibrium conditions, a substantial number of barriers compete to be rate limiting, making the reaction sensitive to trace impurities (LiCl), reactant concentrations, and isotopic substitution. Rate studies using the perdeuterated arene reveal odd effects of LiCl, including catalyzed rate acceleration at lower temperature and catalyzed rate inhibition at higher temperatures. The catalytic effects are accompanied by corresponding changes in the rate law. A kinetic model is presented that captures the critical features of the LiCl catalysis, focusing on the influence of LiCl-catalyzed re-aggregation of the fleeting monomer that can reside above, at, or below the equilibrium population without catalyst. Topics: Catalysis; Fluorobenzenes; Kinetics; Lithium; Lithium Chloride; Propylamines | 2015 |
Lithium diisopropylamide-mediated ortholithiation of 2-fluoropyridines: rates, mechanisms, and the role of autocatalysis.
Lithium diisopropylamide (LDA)-mediated ortholithiations of 2-fluoropyridine and 2,6-difluoropyridine in tetrahydrofuran at -78 °C were studied using a combination of IR and NMR spectroscopic and computational methods. Rate studies show that a substrate-assisted deaggregation of LDA dimer occurs parallel to an unprecedented tetramer-based pathway. Standard and competitive isotope effects confirm post-rate-limiting proton transfer. Autocatalysis stems from ArLi-catalyzed deaggregation of LDA proceeding via 2:2 LDA-ArLi mixed tetramers. A hypersensitivity of the ortholithiation rates to traces of LiCl derives from LiCl-catalyzed LDA dimer-monomer exchange and a subsequent monomer-based ortholithiation. Fleeting 2:2 LDA-LiCl mixed tetramers are suggested to be key intermediates. The mechanisms of both the uncatalyzed and catalyzed deaggregations are discussed. A general mechanistic paradigm is delineated to explain a number of seemingly disparate LDA-mediated reactions, all of which occur in tetrahydrofuran at -78 °C. Topics: Catalysis; Kinetics; Lithium; Lithium Chloride; Magnetic Resonance Spectroscopy; Molecular Structure; Organometallic Compounds; Propylamines; Pyridines | 2013 |
Regioselective lithium diisopropylamide-mediated ortholithiation of 1-chloro-3-(trifluoromethyl)benzene: role of autocatalysis, lithium chloride catalysis, and reversibility.
Ortholithiation of 1-chloro-3-(trifluoromethyl)benzene with lithium diisopropylamide (LDA) in tetrahydrofuran at -78 °C displays characteristics of reactions in which aggregation events are rate limiting. Metalation with lithium-chloride-free LDA involves a rate-limiting deaggregation via dimer-based transition structures. The post-rate-limiting proton transfers are suggested to involve highly solvated triple ions. Autocatalysis by the resulting aryllithiums or catalysis by traces (<100 ppm) of LiCl diverts the reaction through di- and trisolvated monomer-based pathways for metalation at the 2 and 6 positions, respectively. The regiochemistry is dictated by a combination of kinetically controlled metalations overlaid by an equilibration involving diisopropylamine that is shown to occur by the microscopic reverse of the monomer-based metalations. Topics: Benzene Derivatives; Catalysis; Hydrocarbons, Fluorinated; Kinetics; Lithium Chloride; Propylamines | 2011 |
1,4-addition of lithium diisopropylamide to unsaturated esters: role of rate-limiting deaggregation, autocatalysis, lithium chloride catalysis, and other mixed aggregation effects.
Lithium diisopropylamide (LDA) in tetrahydrofuran at -78 °C undergoes 1,4-addition to an unsaturated ester via a rate-limiting deaggregation of LDA dimer followed by a post-rate-limiting reaction with the substrate. Muted autocatalysis is traced to a lithium enolate-mediated deaggregation of the LDA dimer and the intervention of LDA-lithium enolate mixed aggregates displaying higher reactivities than LDA. Striking accelerations are elicited by <1.0 mol % LiCl. Rate and mechanistic studies have revealed that the uncatalyzed and catalyzed pathways funnel through a common monosolvated-monomer-based intermediate. Four distinct classes of mixed aggregation effects are discussed. Topics: Catalysis; Esters; Furans; Kinetics; Lithium; Lithium Chloride; Molecular Structure; Propylamines | 2010 |
Lithium diisopropylamide-mediated ortholithiations: lithium chloride catalysis.
Ortholithiations of a range of arenes mediated by lithium diisopropylamide (LDA) in THF at -78 degrees C reveal substantial accelerations by as little as 0.5 mol % of LiCl (relative to LDA). Substrate dependencies suggest a specific range of reactivity within which the LiCl catalysis is optimal. Standard protocols with unpurified commercial samples of n-butyllithium to prepare LDA or commercially available LDA show marked batch-dependent rates--up to 100-fold--that could prove significant to the unwary practitioner. Other lithium salts elicit more modest accelerations. The mechanism is not discussed. Topics: Catalysis; Lithium Chloride; Molecular Structure; Organometallic Compounds; Propylamines | 2009 |