lithium-chloride and 7-nitroindazole

lithium-chloride has been researched along with 7-nitroindazole* in 5 studies

Other Studies

5 other study(ies) available for lithium-chloride and 7-nitroindazole

ArticleYear
Modulatory effect of opioid ligands on status epilepticus and the role of nitric oxide pathway.
    Epilepsy & behavior : E&B, 2019, Volume: 101, Issue:Pt A

    Topics: Analgesics, Opioid; Animals; Anticonvulsants; Dose-Response Relationship, Drug; Indazoles; Ligands; Lithium Chloride; Male; Morphine; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Pentylenetetrazole; Pilocarpine; Rats; Rats, Wistar; Signal Transduction; Status Epilepticus

2019
Nitrergic, glutamatergic and gabaergic systems in lithium toxicity.
    The Journal of toxicological sciences, 2012, Volume: 37, Issue:5

    We examined the role of nitrergic, glutamatergic and gamma-aminobutyric acid (GABA)-ergic systems in the mechanism(s) underlying lithium induced acute toxicity. With this aim, lithium (18 mEq/kg, i.p.) intoxicated rats were observed for 3 hr recording their clinical signs and death. Lithium exposure at the dose used produced central nervous system (CNS) depression. Pre-treatment of N(w)-nitro-L-arginine methyl ester (L-NAME) a nonselective nitric oxide synthase inhibitor (10 mg/kg, i.p.), 7-nitroindazole (7-NI) a selective neuronal nitric oxide synthase inhibitor (25 mg/kg, i.p.), nitric oxide precursor L-arginine (1,000 mg/kg, i.p.) and MK-801 a noncompetitive antagonist of N-methyl-D-aspartic acid class of glutamate receptors (0.5 mg/kg, i.p.) all increased CNS depression and mortality in lithium group however, no change was seen in GABA receptor agonist GABA (1,000 mg/kg, i.p.) or D-arginine (1,000 mg/kg, i.p.) a biologically inactive enantiomer of L-arginine pre-treated rats. Glutamic acid decarboxylase (GAD) enzyme activity was measured in hippocampus, cerebral cortex and cerebellum of the different groups of animals. GAD enzyme activity reduced in cerebral cortex but not altered in hippocampus or cerebellum by lithium as compared to the control (saline) group. We conclude that an interaction with nitrergic and glutamatergic systems may have a role in the acute toxicity of lithium in rats.The inhibition of glutamate metabolism may arise from this interaction and the involvement of GABA-ergic system should be further investigated in this toxicity.

    Topics: Animals; Dizocilpine Maleate; Enzyme Inhibitors; GABA Agents; gamma-Aminobutyric Acid; Indazoles; Lithium Chloride; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Rats; Rats, Wistar; Receptors, GABA; Receptors, N-Methyl-D-Aspartate

2012
Involvement of nitric oxide-cGMP pathway in the anticonvulsant effects of lithium chloride on PTZ-induced seizure in mice.
    Epilepsy research, 2010, Volume: 89, Issue:2-3

    Lithium is still the mainstay in the treatment of affective disorders as a mood stabilizer. Lithium also shows some anticonvulsant properties. While the underlying mechanisms of action of lithium are not yet exactly understood, we used a model of clonic seizure induced by pentylenetetrazole (PTZ) in male NMRI mice to investigate whether the anticonvulsant effect of lithium is mediated via NO-cGMP pathway. Injection of a single effective dose of lithium chloride (25 mg/kg) intraperitoneally (i.p.) increased significantly the seizure threshold (P<0.01). The anticonvulsant properties of the effective dose of lithium were prevented by pre-treatment with the per se non-effective doses of L-ARG [the substrate for nitric oxide synthase; NOS] (30 and 50 mg/kg) or sildenafil [a phosphodiesterase 5 inhibitor] (10 and 20 mg/kg). L-NAME [a non-specific NOS inhibitor] (5, 15 and 30 mg/kg), 7-NI [a specific neural NOS inhibitor] (30 and 60 mg/kg) or MB [a guanylyl cyclase inhibitor] (0.5 and 1 mg/kg) augmented the anticonvulsant effect of a sub-effective dose of lithium (10 mg/kg, i.p.). Whereas several doses of aminoguanidine [an inducible NOS inhibitor] (20, 50 and 100 mg/kg) failed to alter the anticonvulsant effect of lithium. Our findings demonstrated that nitric oxide-cyclic GMP pathway could be involved in the anticonvulsant properties of the lithium chloride. In addition, the role of constitutive NOS versus inducible NOS is prominent in this phenomenon.

    Topics: Animals; Anticonvulsants; Arginine; Convulsants; Cyclic GMP; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Indazoles; Injections, Intraperitoneal; Lithium Chloride; Male; Methylene Blue; Mice; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Pentylenetetrazole; Phosphodiesterase Inhibitors; Piperazines; Purines; Seizures; Sildenafil Citrate; Sulfones; Treatment Outcome

2010
Agmatine enhances the anticonvulsant effect of lithium chloride on pentylenetetrazole-induced seizures in mice: Involvement of L-arginine/nitric oxide pathway.
    Epilepsy & behavior : E&B, 2010, Volume: 18, Issue:3

    After nearly 60years, lithium is still the mainstay in the treatment of mood disorders. In addition to its antimanic and antidepressant effects, lithium also has anticonvulsant properties. Similar to lithium, agmatine plays a protective role in the central nervous system against seizures and has been reported to enhance the effect of different antiepileptic agents. Moreover, both agmatine and lithium have modulatory effects on the L-arginine/nitric oxide pathway. This study was designed to investigate: (1) whether agmatine and lithium exert a synergistic effect against clonic seizures induced by pentylenetetrazole and (2) whether or not this synergistic effect is mediated through inhibition of the L-arginine/nitric oxide pathway. In our study, acute administration of a single potent dose of lithium chloride (30mg/kg ip) increased seizure threshold, whereas pretreatment with a low and independently noneffective dose of agmatine (3mg/kg) potentiated a subeffective dose of lithium (10mg/kg). N(G)-L-arginine methyl ester (L-NAME, nonspecific nitric oxide synthase inhibitor) at 1 and 5mg/kg and 7-nitroindazole (7-NI, preferential neuronal nitric oxide synthase inhibitor) at 15 and 30mg/kg augmented the anticonvulsant effect of the noneffective combination of lithium (10mg/kg ip) and agmatine (1mg/kg), whereas several doses (20 and 40mg/kg) of aminoguanidine (inducible nitric oxide synthase inhibitor) failed to alter the seizure threshold of the same combination. Furthermore, pretreatment with independently noneffective doses (30 and 60mg/kg) of L-arginine (substrate for nitric oxide synthase) inhibited the potentiating effect of agmatine (3mg/kg) on lithium (10mg/kg). Our findings demonstrate that agmatine and lithium chloride have synergistic anticonvulsant properties that may be mediated through the L-arginine/nitric oxide pathway. In addition, the role of constitutive nitric oxide synthase versus inducible nitric oxide synthase is prominent in this phenomenon.

    Topics: Agmatine; Analysis of Variance; Animals; Antidepressive Agents; Arginine; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Synergism; Enzyme Inhibitors; Indazoles; Lithium Chloride; Male; Mice; NG-Nitroarginine Methyl Ester; Nitric Oxide; Pentylenetetrazole; Seizures; Signal Transduction

2010
Abnormal expression of neuronal nitric oxide synthase triggers limbic seizures and hippocampal damage in rat.
    Biochemical and biophysical research communications, 2002, Feb-22, Volume: 291, Issue:2

    Administration of tacrine (5 mg/kg ip), an anticholinesterase agent, in rats pretreated (24 h beforehand) with lithium chloride (LiCl; 12 mEq/kg ip) provides a useful experimental model to study limbic seizures and delayed hippocampal damage. Here we report Western blotting evidence demonstrating that in rat LiCl and tacrine enhance the expression of neuronal nitric oxide synthase (nNOS), but not eNOS, enzyme protein in the hippocampus during the preconvulsive period and this triggers seizures and hippocampal damage. In fact, systemic administration of 7-nitro indazole (7-NI; 50 mg/kg given ip 30 min before tacrine), a selective inhibitor of nNOS, prevented the expression of motor and electrocortical (ECoG) seizures and abolished neuronal cell death in the hippocampus. A lower dose (5 mg/kg ip) of 7-NI was ineffective. In conclusion, the present data support a role for abnormal nNOS expression in the mechanism which triggers limbic seizures and delayed excitotoxic damage in the hippocampus of rat.

    Topics: Animals; Blotting, Western; Cholinesterase Inhibitors; Enzyme Inhibitors; Hippocampus; Indazoles; Lithium Chloride; Male; Neuroprotective Agents; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Rats; Rats, Wistar; Seizures; Tacrine

2002