lithium-chloride has been researched along with 4-benzyl-2-methyl-1-2-4-thiadiazolidine-3-5-dione* in 7 studies
7 other study(ies) available for lithium-chloride and 4-benzyl-2-methyl-1-2-4-thiadiazolidine-3-5-dione
Article | Year |
---|---|
Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer's disease.
Nrf2, a transcriptional activator of cell protection genes, is an attractive therapeutic target for the prevention of neurodegenerative diseases, including Alzheimer's disease (AD). Current Nrf2 activators, however, may exert toxicity and pathway over-activation can induce detrimental effects. An understanding of the mechanisms mediating Nrf2 inhibition in neurodegenerative conditions may therefore direct the design of drugs targeted for the prevention of these diseases with minimal side-effects. Our study provides the first in vivo evidence that specific inhibition of Keap1, a negative regulator of Nrf2, can prevent neuronal toxicity in response to the AD-initiating Aβ42 peptide, in correlation with Nrf2 activation. Comparatively, lithium, an inhibitor of the Nrf2 suppressor GSK-3, prevented Aβ42 toxicity by mechanisms independent of Nrf2. A new direct inhibitor of the Keap1-Nrf2 binding domain also prevented synaptotoxicity mediated by naturally-derived Aβ oligomers in mouse cortical neurons. Overall, our findings highlight Keap1 specifically as an efficient target for the re-activation of Nrf2 in AD, and support the further investigation of direct Keap1 inhibitors for the prevention of neurodegeneration in vivo. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Animals, Genetically Modified; Blotting, Western; Cell Line, Tumor; Cells, Cultured; Disease Models, Animal; Drosophila melanogaster; Drosophila Proteins; Gene Expression Profiling; Glycogen Synthase Kinase 3; Humans; Kelch-Like ECH-Associated Protein 1; Lithium Chloride; Longevity; Mice; Microscopy, Confocal; Neurons; NF-E2-Related Factor 2; Oleanolic Acid; Peptide Fragments; Protein Binding; Reverse Transcriptase Polymerase Chain Reaction; Thiadiazoles; Triazoles | 2017 |
Suppression of glycogen synthase kinase 3 activity reduces tumor growth of prostate cancer in vivo.
Glycogen synthase kinase 3 (GSK-3) has been regarded as a potential therapeutic target for multiple human cancers. We previously reported that suppression of GSK-3 activity with lithium chloride (LiCl) or small chemical inhibitors impaired cellular DNA synthesis and reduced cell proliferation in prostate cancer cells. Therefore, in this study, we extended this in vitro findings to in vivo settings in order to establish a proof of concept that inhibition of GSK-3 activity is feasible in suppressing tumor growth of prostate cancer in vivo.. In this study, we used three GSK-3 inhibitors, LiCl, TDZD-8, and L803-mts, which are structurally unrelated and non-ATP competitive. Human prostate cancer cell lines PC-3 and C4-2 were used for nude mouse xenograft models. The autochthonous transgenic prostate cancer TRAMP mice were used for testing GSK-3 inhibitor's effect on tumor development. Anti-Ki-67 and BrdU immunohistochemistry was used to determine cell proliferation. The pE2F-TA-LUC (E2F-LUC) luciferase reporter assay and gene specific small interferencing RNA technique were used to examine C/EBP involvement in GSK-3 inhibitor-induced E2F-1 suppression.. Using mouse xenograft models, we demonstrated that LiCl and TDZD-8 significantly suppressed tumor development and growth of subcutaneous xenografts derived from human prostate cancer cells. Similarly, in the TRAMP mice, TDZD-8 and L803-mts reduced the incidence and tumor burden in the prostate lobes. Consistent with our previous in vitro findings, GSK-3 inhibitors significantly reduced BrdU incorporation and Ki67-positive cells in xenograft tumors and mouse cancerous prostates compared to the control. Further analysis revealed that following GSK-3 inhibition, C/EBPα, a negative cell cycle regulator, was remarkably accumulated in xenograft tumors or in cultured prostate cancer cells. Meanwhile, knocking down C/EBPα expression abolished GSK-3 inhibition-induced suppression of E2F1 transactivation, suggesting that C/EBPα accumulation is involved in GSK-3 inhibition-induced anti-tumor effect.. Taken together, these results suggest that GSK-3 inhibition has the potential as a therapeutic strategy for prostate cancer intervention, although further pre-clinical and clinical testing are desirable. Topics: Adenocarcinoma; Animals; Antineoplastic Agents; CCAAT-Enhancer-Binding Protein-alpha; Cell Line, Tumor; Cell Proliferation; Glycogen Synthase Kinase 3; Humans; Lithium Chloride; Male; Mice; Mice, Inbred C57BL; Mice, Nude; Mice, Transgenic; Oligopeptides; Prostatic Neoplasms; RNA, Small Interfering; Thiadiazoles | 2011 |
Involvement of glycogen synthase kinase-3beta in palmitate-induced human umbilical vein endothelial cell apoptosis.
The death of endothelial cells may play a critical role in the development of various vascular diseases, including atherosclerosis. While free fatty acids (FFAs) may stimulate endothelial apoptosis, the molecular and cellular mechanisms of this effect have not been studied intensively. To elucidate the mechanisms involved in FFA-induced endothelial cell apoptosis, we investigated the effect of different pharmacological inhibitors on palmitate-induced apoptosis in human umbilical vein endothelial cells (HUVECs). Interestingly, lithium, a glycogen synthase kinase-3 (GSK-3) inhibitor, showed a strong protective effect.. To examine the involvement of GSK-3beta in palmitate-induced HUVEC apoptosis, its dephosphorylation at Ser9 and enzymatic activation in response to palmitate treatment were monitored by immunoblotting and in vitro kinase assays, respectively. GSK-3beta was dephosphorylated and its enzymatic activity increased in palmitate-treated HUVECs. In addition, pretreatment with other GSK-3beta inhibitors, e.g. SB216763 or TDZD-8, as well as adenoviral transduction with a catalytically inactive GSK-3beta had significant protective effects against palmitate-induced HUVEC apoptosis.. These results demonstrate that the GSK-3beta signalling pathway is involved in palmitate-induced HUVEC apoptosis. Topics: Adenoviridae; Anthracenes; Apoptosis; Caspase 3; Cell Cycle; Cells, Cultured; Cytosol; Endothelial Cells; Endothelium, Vascular; Enzyme Activation; Fumonisins; Genetic Vectors; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Imidazoles; Indoles; Lithium Chloride; Maleimides; Mitochondria; Palmitates; Phosphorylation; Phosphoserine; Poly(ADP-ribose) Polymerases; Protein Processing, Post-Translational; Pyridines; Thiadiazoles; Transduction, Genetic; Umbilical Veins | 2007 |
Protein breakdown in muscle from burned rats is blocked by insulin-like growth factor i and glycogen synthase kinase-3beta inhibitors.
We reported previously that IGF-I inhibits burn-induced muscle proteolysis. Recent studies suggest that activation of the phosphotidylinositol 3-kinase (PI3K)/Akt signaling pathway with downstream phosphorylation of Forkhead box O transcription factors is an important mechanism of IGF-I-induced anabolic effects in skeletal muscle. The potential roles of other mechanisms in the anabolic effects of IGF-I are less well understood. In this study we tested the roles of mammalian target of rapamycin and glycogen synthase kinase-3beta (GSK-3beta) phosphorylation as well as MAPK- and calcineurin-dependent signaling pathways in the anticatabolic effects of IGF-I by incubating extensor digitorum longus muscles from burned rats in the presence of IGF-I and specific signaling pathway inhibitors. Surprisingly, the PI3K inhibitors LY294002 and wortmannin reduced basal protein breakdown. No additional inhibition by IGF-I was noticed in the presence of LY294002 or wortmannin. Inhibition of proteolysis by IGF-I was associated with phosphorylation (inactivation) of GSK-3beta. In addition, the GSK-3beta inhibitors, lithium chloride and thiadiazolidinone-8, reduced protein breakdown in a similar fashion as IGF-I. Lithium chloride, but not thiadiazolidinone-8, increased the levels of phosphorylated Foxo 1 in incubated muscles from burned rats. Inhibitors of mammalian target of rapamycin, MAPK, and calcineurin did not prevent the IGF-I-induced inhibition of muscle proteolysis. Our results suggest that IGF-I inhibits protein breakdown at least in part through a PI3K/Akt/GSK3beta-dependent mechanism. Additional experiments showed that similar mechanisms were responsible for the effect of IGF-I in muscle from nonburned rats. Taken together with recent reports in the literature, the present results suggest that IGF-I inhibits protein breakdown in skeletal muscle by multiple mechanisms, including PI3K/Akt-mediated inactivation of GSK-3beta and Foxo transcription factors. Topics: Animals; Burns; DNA-Binding Proteins; Enzyme Activation; Enzyme Inhibitors; Forkhead Transcription Factors; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Hindlimb; Insulin-Like Growth Factor I; Lithium Chloride; Male; Muscle Proteins; Muscle, Skeletal; Nerve Tissue Proteins; Peptide Hydrolases; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Thiadiazoles; Toes | 2005 |
Insulin-like growth factor-I inhibits dexamethasone-induced proteolysis in cultured L6 myotubes through PI3K/Akt/GSK-3beta and PI3K/Akt/mTOR-dependent mechanisms.
We and others reported previously that IGF-I inhibits dexamethasone-induced proteolysis in cultured L6 myotubes. Recent evidence suggests that this effect of IGF-I at least in part reflects PI3K/Akt-mediated inhibition of Foxo transcription factors. The potential role of other mechanisms, downstream of PI3K/Akt, is not well understood. Here we tested the hypothesis that PI3K/Akt-mediated inactivation of GSK-3beta and activation of mTOR contribute to the anabolic effects of IGF-I in dexamethasone-treated myotubes. Cultured L6 myotubes were treated with 1 microM dexamethasone in the absence or presence of 0.1 microg/ml of IGF-I and inhibitors of GSK-3beta and mTOR. Protein degradation was measured by determining the release of trichloroacetic acid soluble radioactivity from myotubes that had been prelabeled with (3)H-tyrosine for 48 h. IGF-I reduced basal protein breakdown rates and completely abolished the dexamethasone-induced increase in myotube proteolysis. These effects of IGF-I were associated with increased phosphorylation of Akt, GSK-3beta, and the mTOR downstream targets p70(S6K) and 4E-BP1. The PI3K inhibitor LY294002 and the mTOR inhibitor rapamycin reversed the anabolic effect of IGF-I in dexamethasone-treated myotubes. In addition, the GSK-3beta inhibitors LiCl and TDZD-8 reduced protein degradation in a similar fashion as IGF-I. Our results suggest that PI3K/Akt-mediated inactivation of GSK-3beta and activation of mTOR contribute to the anabolic effects of IGF-I in dexamethasone-treated myotubes. Topics: Animals; Cells, Cultured; Chromones; Dexamethasone; Dose-Response Relationship, Drug; Flavonoids; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Insulin-Like Growth Factor I; Lithium Chloride; MAP Kinase Signaling System; Models, Biological; Morpholines; Muscle Fibers, Skeletal; Muscle Proteins; Phosphatidylinositol 3-Kinases; Protein Kinases; Rats; Sirolimus; Thiadiazoles; TOR Serine-Threonine Kinases | 2005 |
GSK-3beta inhibitors reduce protein degradation in muscles from septic rats and in dexamethasone-treated myotubes.
Sepsis is associated with muscle wasting, mainly reflecting increased muscle proteolysis. Recent studies suggest that inhibition of GSK-3beta activity may counteract catabolic stimuli in skeletal muscle. We tested the hypothesis that treatment of muscles from septic rats with the GSK-3beta inhibitors LiCl and TDZD-8 would reduce sepsis-induced muscle proteolysis. Because muscle wasting during sepsis is, at least in part, mediated by glucocorticoids, we also tested the effects of GSK-3beta inhibitors on protein degradation in dexamethasone-treated cultured myotubes. Treatment of incubated extensor digitorum longus muscles with LiCl or TDZD-8 reduced basal and sepsis-induced protein breakdown rates. When cultured myotubes were treated with LiCl or one of the GSK-3beta inhibitors SB216763 or SB415286, protein degradation was reduced. Treatment of incubated muscles or cultured myotubes with LiCl, but not the other GSK-3beta inhibitors, resulted in increased phosphorylation of GSK-3beta at Ser9, consistent with inactivation of the kinase and suggesting that the other inhibitors used in the present experiments inhibit GSK-3beta by phosphorylation-independent mechanisms. The present results suggest that GSK-3beta inhibitors may be used to prevent or treat sepsis-induced, glucocorticoid-regulated muscle proteolysis. Topics: Animals; Cells, Cultured; Dexamethasone; Dose-Response Relationship, Drug; Enzyme Inhibitors; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Lithium Chloride; Male; Muscle Fibers, Skeletal; Muscle Proteins; Muscle, Skeletal; Rats; Rats, Sprague-Dawley; RNA, Messenger; Sepsis; SKP Cullin F-Box Protein Ligases; Thiadiazoles; Tripartite Motif Proteins; Ubiquitin-Protein Ligases | 2005 |
Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death.
The causes of sporadic Parkinson's disease (PD) are poorly understood. 6-Hydroxydopamine (6-OHDA), a PD mimetic, is widely used to model this neurodegenerative disorder in vitro and in vivo; however, the underlying mechanisms remain incompletely elucidated. We demonstrate here that 6-OHDA evoked endoplasmic reticulum (ER) stress, which was characterized by an up-regulation in the expression of GRP78 and GADD153 (Chop), cleavage of procaspase-12, and phosphorylation of eukaryotic initiation factor-2 alpha in a human dopaminergic neuronal cell line (SH-SY5Y) and cultured rat cerebellar granule neurons (CGNs). Glycogen synthase kinase-3 beta (GSK3beta) responds to ER stress, and its activity is regulated by phosphorylation. 6-OHDA significantly inhibited phosphorylation of GSK3beta at Ser9, whereas it induced hyperphosphorylation of Tyr216 with little effect on GSK3beta expression in SH-SY5Y cells and PC12 cells (a rat dopamine cell line), as well as CGNs. Furthermore, 6-OHDA decreased the expression of cyclin D1, a substrate of GSK3beta, and dephosphorylated Akt, the upstream signaling component of GSK3beta. Protein phosphatase 2A (PP2A), an ER stress-responsive phosphatase, was involved in 6-OHDA-induced GSK3beta dephosphorylation (Ser9). Blocking GSK3beta activity by selective inhibitors (lithium, TDZD-8, and L803-mts) prevented 6-OHDA-induced cleavage of caspase-3 and poly(ADP-ribose) polymerase (PARP), DNA fragmentations and cell death. With a tetracycline (Tet)-controlled TrkB inducible system, we demonstrated that activation of TrkB in SH-SY5Y cells alleviated 6-OHDA-induced GSK3beta dephosphorylation (Ser9) and ameliorated 6-OHDA neurotoxicity. TrkB activation also protected CGNs against 6-OHDA-induced damage. Although antioxidants also offered neuroprotection, they had little effect on 6-OHDA-induced GSK3beta activation. These results suggest that GSK3beta is a critical intermediate in pro-apoptotic signaling cascades that are associated with neurodegenerative diseases, thus providing a potential target site amenable to pharmacological intervention. Topics: Animals; Apoptosis; Brain-Derived Neurotrophic Factor; CCAAT-Enhancer-Binding Proteins; Cells, Cultured; Cerebellar Cortex; Cyclin D1; Endoplasmic Reticulum Chaperone BiP; Enzyme Inhibitors; Eukaryotic Initiation Factor-2; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Heat-Shock Proteins; Humans; Lithium Chloride; Molecular Chaperones; Nerve Degeneration; Nerve Tissue Proteins; Neurons; Oxidopamine; Parkinson Disease; PC12 Cells; Phosphoprotein Phosphatases; Phosphorylation; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Rats; Receptor, trkB; Signal Transduction; Thiadiazoles; Transcription Factor CHOP; Transcription Factors | 2004 |