lipid-a and 4-amino-4-deoxyarabinose

lipid-a has been researched along with 4-amino-4-deoxyarabinose* in 33 studies

Other Studies

33 other study(ies) available for lipid-a and 4-amino-4-deoxyarabinose

ArticleYear
Structure and Function of ArnD. A Deformylase Essential for Lipid A Modification with 4-Amino-4-deoxy-l-arabinose and Polymyxin Resistance.
    Biochemistry, 2023, 10-17, Volume: 62, Issue:20

    Covalent modification of lipid A with 4-deoxy-4-amino-l-arabinose (Ara4N) mediates resistance to cationic antimicrobial peptides and polymyxin antibiotics in Gram-negative bacteria. The proteins required for Ara4N biosynthesis are encoded in the

    Topics: Amino Sugars; Anti-Bacterial Agents; Arabinose; Bacterial Proteins; Carbohydrates; Escherichia coli; Lipid A; Polymyxins

2023
Lipopolysaccharides from Different
    Infection and immunity, 2019, Volume: 87, Issue:12

    Lipopolysaccharides (LPSs) of Gram-negative bacteria comprise lipid A, core, and O-polysaccharide (OPS) components. Studies have demonstrated that LPSs isolated from the pathogenic species

    Topics: Amino Sugars; Antibodies, Bacterial; Burkholderia; Burkholderia mallei; Burkholderia pseudomallei; Cross Reactions; Humans; Lipid A; Melioidosis; Molecular Conformation; Polysaccharides, Bacterial; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Toll-Like Receptor 4

2019
Colistin heteroresistance in Enterobacter cloacae is regulated by PhoPQ-dependent 4-amino-4-deoxy-l-arabinose addition to lipid A.
    Molecular microbiology, 2019, Volume: 111, Issue:6

    The Enterobacter cloacae complex (ECC) consists of closely related bacteria commonly associated with the human microbiota. ECC are increasingly isolated from healthcare-associated infections, demonstrating that these Enterobacteriaceae are emerging nosocomial pathogens. ECC can rapidly acquire multidrug resistance to conventional antibiotics. Cationic antimicrobial peptides (CAMPs) have served as therapeutic alternatives because they target the highly conserved lipid A component of the Gram-negative outer membrane. Many Enterobacteriaceae fortify their outer membrane with cationic amine-containing moieties to prevent CAMP binding, which can lead to cell lysis. The PmrAB two-component system (TCS) directly activates 4-amino-4-deoxy-l-arabinose (l-Ara4N) biosynthesis to result in cationic amine moiety addition to lipid A in many Enterobacteriaceae such as E. coli and Salmonella. In contrast, PmrAB is dispensable for CAMP resistance in E. cloacae. Interestingly, some ECC clusters exhibit colistin heteroresistance, where a subpopulation of cells exhibit clinically significant resistance levels compared to the majority population. We demonstrate that E. cloacae lipid A is modified with l-Ara4N to induce CAMP heteroresistance and the regulatory mechanism is independent of the PmrAB

    Topics: Amino Sugars; Anti-Bacterial Agents; Bacterial Proteins; Base Sequence; Colistin; Drug Resistance, Bacterial; Enterobacter cloacae; Gene Expression Regulation, Bacterial; Lipid A; Promoter Regions, Genetic

2019
Synthetic Phosphodiester-Linked 4-Amino-4-deoxy-l-arabinose Derivatives Demonstrate that ArnT is an Inverting Aminoarabinosyl Transferase.
    Chembiochem : a European journal of chemical biology, 2019, 12-02, Volume: 20, Issue:23

    4-Amino-4-deoxy-l-arabinopyranose (Ara4N) residues have been linked to antibiotic resistance due to reduction of the negative charge in the lipid A and core regions of the bacterial lipopolysaccharide (LPS). To study the enzymatic transfer of Ara4N onto lipid A, which is catalysed by the ArnT transferase, we chemically synthesised a series of anomeric phosphodiester-linked lipid Ara4N derivatives containing linear aliphatic chains as well as E- and Z-configured monoterpene units. Coupling reactions were based on sugar-derived H-phosphonates, followed by oxidation and global deprotection. The enzymatic Ara4N transfer was performed in vitro with crude membranes from a deep-rough mutant from Escherichia coli as acceptor. Product formation was detected by TLC and LC-ESI-QTOF mass spectrometry. Out of seven analogues tested, only the α-neryl derivative was accepted by the Burkholderia cenocepacia ArnT protein, leading to substitution of the Kdo

    Topics: Amino Sugars; Bacterial Proteins; Burkholderia cenocepacia; Enzyme Assays; Escherichia coli; Lipid A; Organophosphates; Organophosphonates; Pentosyltransferases; Substrate Specificity

2019
Polymyxin-Induced Lipid A Deacylation in Pseudomonas aeruginosa Perturbs Polymyxin Penetration and Confers High-Level Resistance.
    ACS chemical biology, 2018, 01-19, Volume: 13, Issue:1

    Polymyxins are last-line antibiotics against life-threatening multidrug-resistant Gram-negative bacteria. Unfortunately, polymyxin resistance is increasingly reported, leaving a total lack of therapies. Using lipidomics and transcriptomics, we discovered that polymyxin B induced lipid A deacylation via pagL in both polymyxin-resistant and -susceptible Pseudomonas aeruginosa. Our results demonstrated that the deacylation of lipid A is an "innate immunity" response to polymyxins and a key compensatory mechanism to the aminoarabinose modification to confer high-level polymyxin resistance in P. aeruginosa. Furthermore, cutting-edge neutron reflectometry studies revealed that an assembled outer membrane (OM) with the less hydrophobic penta-acylated lipid A decreased polymyxin B penetration, compared to the hexa-acylated form. Polymyxin analogues with enhanced hydrophobicity displayed superior penetration into the tail regions of the penta-acylated lipid A OM. Our findings reveal a previously undiscovered mechanism of polymyxin resistance, wherein polymyxin-induced lipid A remodeling affects the OM packing and hydrophobicity, perturbs polymyxin penetration, and thereby confers high-level resistance.

    Topics: Acylation; Amino Sugars; Anti-Bacterial Agents; Bacterial Proteins; Cell Membrane; Drug Resistance, Bacterial; Lipid A; Polymyxins; Pseudomonas aeruginosa

2018
Comprehensive analysis of clinical Burkholderia pseudomallei isolates demonstrates conservation of unique lipid A structure and TLR4-dependent innate immune activation.
    PLoS neglected tropical diseases, 2018, Volume: 12, Issue:2

    Burkholderia pseudomallei is an environmental bacterium that causes melioidosis, a major community-acquired infection in tropical regions. Melioidosis presents with a range of clinical symptoms, is often characterized by a robust inflammatory response, may relapse after treatment, and results in high mortality rates. Lipopolysaccharide (LPS) of B. pseudomallei is a potent immunostimulatory molecule comprised of lipid A, core, and O-polysaccharide (OPS) components. Four B. pseudomallei LPS types have been described based on SDS-PAGE patterns that represent the difference of OPS-type A, type B, type B2 and rough LPS. The majority of B. pseudomallei isolates are type A. We used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) followed by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QqTOF MS) and gas chromatography to characterize the lipid A of B. pseudomallei within LPS type A isolates. We determined that B. pseudomallei lipid A is represented by penta- and tetra-acylated species modified with 4-amino-4-deoxy-arabinose (Ara4N). The MALDI-TOF profiles from 171 clinical B. pseudomallei isolates, including 68 paired primary and relapse isolates and 35 within-host isolates were similar. We did not observe lipid A structural changes when the bacteria were cultured in different growth conditions. Dose-dependent NF-κB activation in HEK cells expressing TLR4 was observed using multiple heat-killed B. pseudomallei isolates and corresponding purified LPS. We demonstrated that TLR4-dependent NF-κB activation induced by heat-killed bacteria or LPS prepared from OPS deficient mutant was significantly greater than those induced by wild type B. pseudomallei. These findings suggest that the structure of B. pseudomallei lipid A is highly conserved in a wide variety of clinical and environmental circumstances but that the presence of OPS may modulate LPS-driven innate immune responses in melioidosis.

    Topics: Amino Sugars; Burkholderia pseudomallei; HEK293 Cells; Humans; Immunity, Innate; Lipid A; Lipopolysaccharides; Melioidosis; NF-kappa B; Signal Transduction; Spectrometry, Mass, Electrospray Ionization; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Toll-Like Receptor 4

2018
Colistin resistance in Pseudomonas aeruginosa that is not linked to arnB.
    Journal of medical microbiology, 2017, Volume: 66, Issue:6

    It is known that the arnB (or pmrH) gene encoding uridine 5'-(beta-1-threo-pentapyranosyl-4-ulose diphosphate) aminotransferase plays a critical role in colistin resistance in Pseudomonas aeruginosa through the addition of 4-amino-4-deoxy-l-arabinose (l-Ara4N) to lipid A. In this study, we attempted to obtain a colistin-resistant mutant from an arnB-deleted mutant through exposure to colistin.. We constructed an arnB deletion mutant (P5ΔarnB :: nptIII) from a colistin-susceptible strain (P5) by allelic replacement mutagenesis, and colistin-resistant mutants were selected in vitro using P5 and P5ΔarnB :: nptIII. The growth rate, lipid A structure, biofilm-forming activity and cell viability in diverse stressful conditions (osmotic, oxidative, acidic and heat stress) were investigated. Expression of phoP, pmrA, parR, and cprR was evaluated by qRT-PCR.. An arnB deletion mutant was shown to develop colistin resistance through the addition of l-Ara4N to lipid A, despite a low survival rate (over 1000-fold lower than that of the wild-type strain) in the media with colistin. Two colistin-resistant mutants showed higher survival rates than colistin-susceptible strains against 5 % NaCl. In the presence of acidic and heat stress, P5ΔarnB :: nptIII-CstR exhibited higher survival rates during conditions of 1 % HCl and 42 °C than the other strains. Both phoP and pmrA genes were overexpressed significantly in both colistin-resistant mutants, but parR and cprR genes were not.. We revealed that colistin resistance could be developed despite arnB deletion in P. aeruginosa through the addition of l-Ara4N to lipid A, which was accompanied by diverse physiological changes.

    Topics: Amino Sugars; Anti-Bacterial Agents; Bacterial Proteins; Colistin; Drug Resistance, Bacterial; Genes, Bacterial; Lipid A; Microbial Sensitivity Tests; Microbial Viability; Mutation; Pseudomonas aeruginosa; Stress, Physiological

2017
Structural modification of LPS in colistin-resistant, KPC-producing Klebsiella pneumoniae.
    The Journal of antimicrobial chemotherapy, 2017, Nov-01, Volume: 72, Issue:11

    Colistin resistance in Klebsiella pneumoniae typically involves inactivation or mutations of chromosomal genes mgrB, pmrAB or phoPQ, but data regarding consequent modifications of LPS are limited.. To examine the sequences of chromosomal loci implicated in colistin resistance and the respective LPS-derived lipid A profiles using 11 pairs of colistin-susceptible and -resistant KPC-producing K. pneumoniae clinical strains.. The strains were subjected to high-throughput sequencing with Illumina HiSeq. The mgrB gene was amplified by PCR and sequenced. Lipid profiles were determined using MALDI-TOF MS.. All patients were treated with colistimethate prior to the isolation of colistin-resistant strains (MIC >2 mg/L). Seven of 11 colistin-resistant strains had deletion or insertional inactivation of mgrB. Three strains, including one with an mgrB deletion, had non-synonymous pmrB mutations associated with colistin resistance. When analysed by MALDI-TOF MS, all colistin-resistant strains generated mass spectra containing ions at m/z 1955 and 1971, consistent with addition of 4-amino-4-deoxy-l-arabinose (Ara4N) to lipid A, whereas only one of the susceptible strains displayed this lipid A phenotype.. The pathway to colistin resistance in K. pneumoniae primarily involves lipid A modification with Ara4N in clinical settings.

    Topics: Adult; Aged; Amino Sugars; Anti-Bacterial Agents; Bacterial Proteins; beta-Lactamases; Chromosomes, Bacterial; Colistin; Drug Resistance, Bacterial; Female; Humans; Klebsiella Infections; Klebsiella pneumoniae; Lipid A; Lipopolysaccharides; Male; Membrane Proteins; Microbial Sensitivity Tests; Middle Aged; Mutagenesis, Insertional

2017
ArnT proteins that catalyze the glycosylation of lipopolysaccharide share common features with bacterial N-oligosaccharyltransferases.
    Glycobiology, 2016, Volume: 26, Issue:3

    ArnT is a glycosyltransferase that catalyzes the addition of 4-amino-4-deoxy-l-arabinose (l-Ara4N) to the lipid A moiety of the lipopolysaccharide. This is a critical modification enabling bacteria to resist killing by antimicrobial peptides. ArnT is an integral inner membrane protein consisting of 13 predicted transmembrane helices and a large periplasmic C-terminal domain. We report here the identification of a functional motif with a canonical consensus sequence DEXRYAX(5)MX(3)GXWX(9)YFEKPX(4)W spanning the first periplasmic loop, which is highly conserved in all ArnT proteins examined. Site-directed mutagenesis demonstrated the contribution of this motif in ArnT function, suggesting that these proteins have a common mechanism. We also demonstrate that the Burkholderia cenocepacia and Salmonella enterica serovar Typhimurium ArnT C-terminal domain is required for polymyxin B resistance in vivo. Deletion of the C-terminal domain in B. cenocepacia ArnT resulted in a protein with significantly reduced in vitro binding to a lipid A fluorescent substrate and unable to catalyze lipid A modification with l-Ara4N. An in silico predicted structural model of ArnT strongly resembled the tertiary structure of Campylobacter lari PglB, a bacterial oligosaccharyltransferase involved in protein N-glycosylation. Therefore, distantly related oligosaccharyltransferases from ArnT and PglB families operating on lipid and polypeptide substrates, respectively, share unexpected structural similarity that could not be predicted from direct amino acid sequence comparisons. We propose that lipid A and protein glycosylation enzymes share a conserved catalytic mechanism despite their evolutionary divergence.

    Topics: Amino Acid Motifs; Amino Sugars; Arabinose; Burkholderia cenocepacia; Escherichia coli; Glycosylation; Hexosyltransferases; Lipid A; Lipopolysaccharides; Membrane Proteins; Mutagenesis, Site-Directed; Protein Structure, Secondary; Protein Structure, Tertiary; Salmonella enterica

2016
Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation.
    Science (New York, N.Y.), 2016, Feb-05, Volume: 351, Issue:6273

    Polymyxins are antibiotics used in the last line of defense to combat multidrug-resistant infections by Gram-negative bacteria. Polymyxin resistance arises through charge modification of the bacterial outer membrane with the attachment of the cationic sugar 4-amino-4-deoxy-l-arabinose to lipid A, a reaction catalyzed by the integral membrane lipid-to-lipid glycosyltransferase 4-amino-4-deoxy-L-arabinose transferase (ArnT). Here, we report crystal structures of ArnT from Cupriavidus metallidurans, alone and in complex with the lipid carrier undecaprenyl phosphate, at 2.8 and 3.2 angstrom resolution, respectively. The structures show cavities for both lipidic substrates, which converge at the active site. A structural rearrangement occurs on undecaprenyl phosphate binding, which stabilizes the active site and likely allows lipid A binding. Functional mutagenesis experiments based on these structures suggest a mechanistic model for ArnT family enzymes.

    Topics: Amino Sugars; Arabinose; Bacterial Proteins; Catalysis; Catalytic Domain; Crystallography, X-Ray; Cupriavidus; Glycosylation; Lipid A; Mutagenesis; Mutation; Pentosyltransferases; Polyisoprenyl Phosphates; Polymyxins; Protein Binding; Protein Structure, Secondary; Protein Structure, Tertiary; Substrate Specificity

2016
Chemical synthesis of Burkholderia Lipid A modified with glycosyl phosphodiester-linked 4-amino-4-deoxy-β-L-arabinose and its immunomodulatory potential.
    Chemistry (Weinheim an der Bergstrasse, Germany), 2015, Mar-02, Volume: 21, Issue:10

    Modification of the Lipid A phosphates by positively charged appendages is a part of the survival strategy of numerous opportunistic Gram-negative bacteria. The phosphate groups of the cystic fibrosis adapted Burkholderia Lipid A are abundantly esterified by 4-amino-4-deoxy-β-L-arabinose (β-L-Ara4N), which imposes resistance to antibiotic treatment and contributes to bacterial virulence. To establish structural features accounting for the unique pro-inflammatory activity of Burkholderia LPS we have synthesised Lipid A substituted by β-L-Ara4N at the anomeric phosphate and its Ara4N-free counterpart. The double glycosyl phosphodiester was assembled by triazolyl-tris-(pyrrolidinyl)phosphonium-assisted coupling of the β-L-Ara4N H-phosphonate to α-lactol of β(1→6) diglucosamine, pentaacylated with (R)-(3)-acyloxyacyl- and Alloc-protected (R)-(3)-hydroxyacyl residues. The intermediate 1,1'-glycosyl-H-phosphonate diester was oxidised in anhydrous conditions to provide, after total deprotection, β-L-Ara4N-substituted Burkholderia Lipid A. The β-L-Ara4N modification significantly enhanced the pro-inflammatory innate immune signaling of otherwise non-endotoxic Burkholderia Lipid A.

    Topics: Amino Sugars; Anti-Bacterial Agents; Arabinose; Bacterial Proteins; Burkholderia; Escherichia coli; Glucosamine; Glycolipids; Humans; Lipid A; Lipopolysaccharides; Protein Conformation; Structure-Activity Relationship

2015
Extracellular zinc induces phosphoethanolamine addition to Pseudomonas aeruginosa lipid A via the ColRS two-component system.
    Molecular microbiology, 2015, Volume: 97, Issue:1

    Gram-negative bacteria survive harmful environmental stressors by modifying their outer membrane. Much of this protection is afforded upon remodeling of the lipid A region of the major surface molecule lipopolysaccharide (LPS). For example, the addition of cationic substituents, such as 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoehthanolamine (pEtN) at the lipid A phosphate groups, is often induced in response to specific environmental flux stabilizing the outer membrane. The work herein represents the first report of pEtN addition to Pseudomonas aeruginosa lipid A. We have identified the key pEtN transferase which we named EptAPa and characterized its strict activity on only one position of lipid A, contrasting from previously studied EptA enzymes. We further show that transcription of eptAP a is regulated by zinc via the ColRS two-component system instead of the PmrAB system responsible for eptA regulation in E. coli and Salmonella enterica. Further, although L-Ara4N is readily added to the same position of lipid A as pEtN under certain environmental conditions, ColR specifically induces pEtN addition to lipid A in lieu of L-Ara4N when Zn2+ is present. The unique, specific regulation of eptAP a transcription and enzymatic activity described in this work demonstrates the tight yet inducible control over LPS modification in P. aeruginosa.

    Topics: Amino Sugars; Bacterial Proteins; Escherichia coli; Ethanolaminephosphotransferase; Ethanolamines; Lipid A; Phosphatidylethanolamines; Pseudomonas aeruginosa; Salmonella typhimurium; Zinc

2015
Functional characterization and biological significance of Yersinia pestis lipopolysaccharide biosynthesis genes.
    Biochemistry. Biokhimiia, 2011, Volume: 76, Issue:7

    In silico analysis of available bacterial genomes revealed the phylogenetic proximity levels of enzymes responsible for biosynthesis of lipopolysaccharide (LPS) of Yersinia pestis, the cause of plague, to homologous proteins of closely related Yersinia spp. and some other bacteria (Serratia proteamaculans, Erwinia carotovora, Burkholderia dolosa, Photorhabdus luminescens and others). Isogenic Y. pestis mutants with single or double mutations in 14 genes of LPS biosynthetic pathways were constructed by site-directed mutagenesis on the base of the virulent strain 231 and its attenuated derivative. Using high-resolution electrospray ionization mass spectrometry, the full LPS structures were elucidated in each mutant, and the sequence of monosaccharide transfers in the assembly of the LPS core was inferred. Truncation of the core decreased significantly the resistance of bacteria to normal human serum and polymyxin B, the latter probably as a result of a less efficient incorporation of 4-amino-4-deoxyarabinose into lipid A. Impairing of LPS biosynthesis resulted also in reduction of LPS-dependent enzymatic activities of plasminogen activator and elevation of LD(50) and average survival time in mice and guinea pigs infected with experimental plague. Unraveling correlations between biological properties of bacteria and particular LPS structures may help a better understanding of pathogenesis of plague and implication of appropriate genes as potential molecular targets for treatment of plague.

    Topics: Amino Sugars; Animals; Blood Bactericidal Activity; Drug Resistance, Bacterial; Female; Genes, Bacterial; Guinea Pigs; Humans; Lipid A; Lipopolysaccharides; Male; Mice; Plague; Plasminogen Activators; Polymyxin B; Spectrometry, Mass, Electrospray Ionization; Virulence; Yersinia pestis

2011
An undecaprenyl phosphate-aminoarabinose flippase required for polymyxin resistance in Escherichia coli.
    The Journal of biological chemistry, 2007, Dec-07, Volume: 282, Issue:49

    Modification of lipid A with the 4-amino-4-deoxy-L-arabinose (L-Ara4N) moiety is required for resistance to polymyxin and cationic antimicrobial peptides in Escherichia coli and Salmonella typhimurium. An operon of seven genes (designated pmrHFIJKLM in S. typhimurium), which is regulated by the PmrA transcription factor and is also present in E. coli, is necessary for the maintenance of polymyxin resistance. We previously elucidated the roles of pmrHFIJK in the biosynthesis and attachment of L-Ara4N to lipid A and renamed these genes arn-BCADT, respectively. We now propose functions for the last two genes of the operon, pmrL and pmrM. Chromosomal inactivation of each of these genes in an E. coli pmrA(c) parent switched its phenotype from polymyxin-resistant to polymyxin-sensitive. Lipid A was no longer modified with L-Ara4N, even though the levels of the lipid-linked donor of the L-Ara4N moiety, undecaprenyl phosphate-alpha-L-Ara4N, were not reduced in the mutants. However, the undecaprenyl phosphate-alpha-L-Ara4N present in the mutants was less concentrated on the periplasmic surface of the inner membrane, as judged by 4-5-fold reduced labeling with the inner membrane-impermeable amine reagent N-hydroxysulfosuccin-imidobiotin. In an arnT mutant of the same pmrA(c) parent, which lacks the enzyme that transfers the L-Ara4N unit to lipid A but retains the same high levels of undecaprenyl phosphate-alpha-L-Ara4N as the parent, N-hydroxysulfosuccinimidobiotin labeling was not reduced. These results implicate pmrL and pmrM, but not arnT, in transporting undecaprenyl phosphate-alpha-L-Ara4N across the inner membrane. PmrM and PmrL, now renamed ArnE and ArnF because of their involvement in L-Ara4N modification of lipid A, may be subunits of an undecaprenyl phosphate-alpha-L-Ara4N flippase.

    Topics: Amino Sugars; Anti-Bacterial Agents; Bacterial Proteins; Biological Transport; Carboxy-Lyases; Carrier Proteins; Cell Membrane; Drug Resistance, Bacterial; Escherichia coli; Gene Silencing; Hexosyltransferases; Lipid A; Operon; Periplasm; Polymyxins; Salmonella typhimurium

2007
Structural features of lipid A of Piscirickettsia salmonis, the etiological agent of the salmonid rickettsial septicemia.
    Acta virologica, 2007, Volume: 51, Issue:4

    The composition and structure of lipid A isolated from the lipopolysaccharide (LPS) of Piscirickettsia salmonis were investigated by chemical analyses, gas chromatography/mass spectrometry (GCMS), and electrospray ionization (ESI) combined with the tandem mass spectrometry (MS/MS). Our study revealed moderate compositional and structural heterogeneity of lipid A with respect to the content of phosphate groups and 4-amino-4-deoxy-L-arabinopyranose (Ara4N) residues and with regard to the degree of acylation. It appeared that at least two molecular species were present in lipid A. The major species represented the hexaacyl lipid A consisting of the ss-(1--> 6)-linked D-glucosamine (GlcN) disaccharide backbone carrying two phosphate groups. The first one at the glycosidic hydroxyl group of the reducing GlcN I and the second one at the O-4' position of the non-reducing GlcN II. The primary fatty acids consisted of three 3-hydroxytetradecanoic [C14:0(3-OH)] and one 3-hydroxyhexadecanoic [C16:0(3-OH)] acids. The latter was amide-linked to GlcN I and one C14:0(3-OH) was amide-linked to GlcN II. Two secondary fatty acids were represented by C14:0(3-OH) and were equally distributed between the O-2' and O-3' positions. The phosphate group at O-4' carried a non-stoichiometric substituent Ara4N. The minor lipid A species contained exclusively C14:0(3-OH) with an asymmetric distribution (4+2) at GlcN II and GlcN I, respectively. The P. salmonis lipid A resembles structurally strongly endotoxic enterobacterial lipid A. This could be one of the reasons for the observed high endotoxicity of P. salmonis.

    Topics: Acylation; Amino Sugars; Animals; Gas Chromatography-Mass Spectrometry; Glucosamine; Lipid A; Molecular Structure; Myristic Acids; Phosphates; Piscirickettsia; Salmonidae; Tandem Mass Spectrometry

2007
A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-Amino-4-deoxy-L-arabinose. Identification and function oF UDP-4-deoxy-4-formamido-L-arabinose.
    The Journal of biological chemistry, 2005, Apr-08, Volume: 280, Issue:14

    Modification of the phosphate groups of lipid A with 4-amino-4-deoxy-L-arabinose (L-Ara4N) is required for resistance to polymyxin and cationic antimicrobial peptides in Escherichia coli and Salmonella typhimurium. We previously demonstrated that the enzyme ArnA catalyzes the NAD+-dependent oxidative decarboxylation of UDP-glucuronic acid to yield the UDP-4''-ketopentose, uridine 5'-diphospho-beta-(L-threo-pentapyranosyl-4''-ulose), which is converted by ArnB to UDP-beta-(L-Ara4N). E. coli ArnA is a bi-functional enzyme with a molecular mass of approximately 74 kDa. The oxidative decarboxylation of UDP-glucuronic acid is catalyzed by the 345-residue C-terminal domain of ArnA. The latter shows sequence similarity to enzymes that oxidize the C-4'' position of sugar nucleotides, like UDP-galactose epimerase, dTDP-glucose-4,6-dehydratase, and UDP-xylose synthase. We now show that the 304-residue N-terminal domain catalyzes the N-10-formyltetrahydrofolate-dependent formylation of the 4''-amine of UDP-L-Ara4N, generating the novel sugar nucleotide, uridine 5'-diphospho-beta-(4-deoxy-4-formamido-L-arabinose). The N-terminal domain is highly homologous to methionyl-tRNA(f)Met formyltransferase. The structure of the formylated sugar nucleotide generated in vitro by ArnA was validated by 1H and 13C NMR spectroscopy. The two domains of ArnA were expressed independently as active proteins in E. coli. Both were required for maintenance of polymyxin resistance and L-Ara4N modification of lipid A. We conclude that N-formylation of UDP-L-Ara4N is an obligatory step in the biosynthesis of L-Ara4N-modified lipid A in polymyxin-resistant mutants. We further demonstrate that only the formylated sugar nucleotide is converted in vitro to an undecaprenyl phosphate-linked form by the enzyme ArnC. Because the L-Ara4N unit attached to lipid A is not derivatized with a formyl group, we postulate the existence of a deformylase, acting later in the pathway.

    Topics: Amino Sugars; Anti-Bacterial Agents; Carboxy-Lyases; Drug Resistance, Microbial; Escherichia coli; Escherichia coli Proteins; Genetic Complementation Test; Hydroxymethyl and Formyl Transferases; Lipid A; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Polymyxins; Protein Structure, Tertiary; Recombinant Fusion Proteins; Uridine Diphosphate Sugars

2005
Transcriptional regulation of the 4-amino-4-deoxy-L-arabinose biosynthetic genes in Yersinia pestis.
    The Journal of biological chemistry, 2005, Apr-15, Volume: 280, Issue:15

    Inducible membrane remodeling is an adaptive mechanism that enables Gram-negative bacteria to resist killing by cationic antimicrobial peptides and to avoid eliciting an immune response. Addition of 4-amino-4-deoxy-l -arabinose (4-aminoarabinose) moieties to the phosphate residues of the lipid A portion of the lipopolysaccharide decreases the net negative charge of the bacterial membrane resulting in protection from the cationic antimicrobial peptide polymyxin B. In Salmonella enterica serovar Typhimurium, the PmrA/PmrB two-component regulatory system governs resistance to polymyxin B by controlling transcription of the 4-aminoarabinose biosynthetic genes. Transcription of PmrA-activated genes is induced by Fe(3+), which is sensed by PmrA cognate sensor PmrB, and by low Mg(2+), in a mechanism that requires not only the PmrA and PmrB proteins but also the Mg(2+)-responding PhoP/PhoQ system and the PhoP-activated PmrD protein, a post-translational activator of the PmrA protein. Surprisingly, Yersinia pestis can promote PhoP-dependent modification of its lipid A with 4-aminoarabinose despite lacking a PmrD protein. Here we report that Yersinia uses different promoters to transcribe the 4-aminoarabinose biosynthetic genes pbgP and ugd depending on the inducing signal. This is accomplished by the presence of distinct binding sites for the PmrA and PhoP proteins in the promoters of the pbgP and ugd genes. Our results demonstrate that closely related bacterial species may use disparate regulatory pathways to control genes encoding conserved proteins.

    Topics: Amino Sugars; Bacterial Proteins; Base Sequence; Binding Sites; Cell Proliferation; Deoxyribonuclease I; DNA Primers; Gene Deletion; Gene Expression Regulation, Bacterial; Iron; Lipid A; Magnesium; Models, Biological; Molecular Sequence Data; Plasmids; Polymyxin B; Promoter Regions, Genetic; Salmonella enterica; Single-Strand Specific DNA and RNA Endonucleases; Transcription Factors; Transcription, Genetic; Yersinia pestis

2005
Crystal structure and mechanism of the Escherichia coli ArnA (PmrI) transformylase domain. An enzyme for lipid A modification with 4-amino-4-deoxy-L-arabinose and polymyxin resistance.
    Biochemistry, 2005, Apr-12, Volume: 44, Issue:14

    Gram-negative bacteria have evolved mechanisms to resist the bactericidal action of cationic antimicrobial peptides of the innate immune system and antibiotics such as polymyxin. The strategy involves the addition of the positively charged sugar 4-amino-4-deoxy-l-arabinose (Ara4N) to lipid A in their outer membrane. ArnA is a key enzyme in the Ara4N-lipid A modification pathway. It is a bifunctional enzyme catalyzing (1) the oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcA) to the UDP-4' '-ketopentose [UDP-beta-(l-threo-pentapyranosyl-4' '-ulose] and (2) the N-10-formyltetrahydrofolate-dependent formylation of UDP-Ara4N. Here we demonstrate that the transformylase activity of the Escherichia coli ArnA is contained in its 300 N-terminal residues. We designate it the ArnA transformylase domain and describe its crystal structure solved to 1.7 A resolution. The enzyme adopts a bilobal structure with an N-terminal Rossmann fold domain containing the N-10-formyltetrahydrofolate binding site and a C-terminal subdomain resembling an OB fold. Sequence and structure conservation around the active site of ArnA transformylase and other N-10-formyltetrahydrofolate-utilizing enzymes suggests that the HxSLLPxxxG motif can be used to identify enzymes that belong to this family. Binding of an N-10-formyltetrahydrofolate analogue was modeled into the structure of ArnA based on its similarity with glycinamide ribonucleotide formyltransferase. We also propose a mechanism for the transformylation reaction catalyzed by ArnA involving residues N(102), H(104), and D(140). Supporting this hypothesis, point mutation of any of these residues abolishes activity.

    Topics: Amino Acid Sequence; Amino Sugars; Base Sequence; Carboxy-Lyases; Crystallography, X-Ray; DNA Primers; Drug Resistance, Microbial; Escherichia coli; Lipid A; Molecular Sequence Data; Polymyxins; Protein Conformation; Sequence Homology, Amino Acid

2005
Crystal structure of Escherichia coli ArnA (PmrI) decarboxylase domain. A key enzyme for lipid A modification with 4-amino-4-deoxy-L-arabinose and polymyxin resistance.
    Biochemistry, 2004, Oct-26, Volume: 43, Issue:42

    Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa can modify the structure of lipid A in their outer membrane with 4-amino-4-deoxy-l-arabinose (Ara4N). Such modification results in resistance to cationic antimicrobial peptides of the innate immune system and antibiotics such as polymyxin. ArnA is a key enzyme in the lipid A modification pathway, and its deletion abolishes both the Ara4N-lipid A modification and polymyxin resistance. ArnA is a bifunctional enzyme. It can catalyze (i) the NAD(+)-dependent decarboxylation of UDP-glucuronic acid to UDP-4-keto-arabinose and (ii) the N-10-formyltetrahydrofolate-dependent formylation of UDP-4-amino-4-deoxy-l-arabinose. We show that the NAD(+)-dependent decarboxylating activity is contained in the 360 amino acid C-terminal domain of ArnA. This domain is separable from the N-terminal fragment, and its activity is identical to that of the full-length enzyme. The crystal structure of the ArnA decarboxylase domain from E. coli is presented here. The structure confirms that the enzyme belongs to the short-chain dehydrogenase/reductase (SDR) family. On the basis of sequence and structure comparisons of the ArnA decarboxylase domain with other members of the short-chain dehydrogenase/reductase (SDR) family, we propose a binding model for NAD(+) and UDP-glucuronic acid and the involvement of residues T(432), Y(463), K(467), R(619), and S(433) in the mechanism of NAD(+)-dependent oxidation of the 4''-OH of the UDP-glucuronic acid and decarboxylation of the UDP-4-keto-glucuronic acid intermediate.

    Topics: Amino Acid Sequence; Amino Sugars; Binding Sites; Carboxy-Lyases; Crystallization; Crystallography, X-Ray; Drug Resistance, Bacterial; Escherichia coli Proteins; Hydroxymethyl and Formyl Transferases; Lipid A; Models, Molecular; Molecular Sequence Data; Multienzyme Complexes; Peptide Fragments; Polymyxins; Protein Structure, Tertiary; Substrate Specificity; UDPglucose 4-Epimerase; Uridine Diphosphate Glucuronic Acid

2004
Origin of lipid A species modified with 4-amino-4-deoxy-L-arabinose in polymyxin-resistant mutants of Escherichia coli. An aminotransferase (ArnB) that generates UDP-4-deoxyl-L-arabinose.
    The Journal of biological chemistry, 2003, Jul-04, Volume: 278, Issue:27

    In Escherichia coli and Salmonella typhimurium, addition of the 4-amino-4-deoxy-l-arabinose (l-Ara4N) moiety to the phosphate group(s) of lipid A is required for resistance to polymyxin and cationic antimicrobial peptides. We have proposed previously (Breazeale, S. D., Ribeiro, A. A., and Raetz, C. R. H. (2002) J. Biol. Chem. 277, 2886-2896) a pathway for l-Ara4N biosynthesis that begins with the ArnA-catalyzed C-4" oxidation and C-6" decarboxylation of UDP-glucuronic acid, followed by the C-4" transamination of the product to generate the novel sugar nucleotide UDP-l-Ara4N. We now show that ArnB (PmrH) encodes the relevant aminotransferase. ArnB was overexpressed using a T7lac promoter-driven construct and shown to catalyze the reversible transfer of the amino group from glutamate to the acceptor, uridine 5'-(beta-l-threo-pentapyranosyl-4"-ulose diphosphate), the intermediate that is synthesized by ArnA from UDP-glucuronic acid. A 1.7-mg sample of the putative UDP-l-Ara4N product generated in vitro was purified by ion exchange chromatography, and its structure was confirmed by 1H and 13C NMR spectroscopy. ArnB, which is a cytoplasmic protein, was purified to homogeneity from an overproducing strain of E. coli and shown to contain a pyridoxal phosphate cofactor, as judged by ultraviolet/visible spectrophotometry. The pyridoxal phosphate was converted to the pyridoxamine form in the presence of excess glutamate. A simple quantitative radiochemical assay was developed for ArnB, which can be used to assay the enzyme either in the forward or the reverse direction. The enzyme is highly selective for glutamate as the amine donor, but the equilibrium constant in the direction of UDP-l-Ara4N formation is unfavorable (approximately 0.1). ArnB is a member of a very large family of aminotransferases, but closely related ArnB orthologs are present only in those bacteria capable of synthesizing lipid A species modified with the l-Ara4N moiety.

    Topics: Amino Sugars; Anti-Bacterial Agents; Drug Resistance; Escherichia coli; Lipid A; Polymyxins; Salmonella typhimurium; Transaminases; Uridine Diphosphate

2003
Oxidative decarboxylation of UDP-glucuronic acid in extracts of polymyxin-resistant Escherichia coli. Origin of lipid a species modified with 4-amino-4-deoxy-L-arabinose.
    The Journal of biological chemistry, 2002, Jan-25, Volume: 277, Issue:4

    Addition of the 4-amino-4-deoxy-l-arabinose (l-Ara4N) moiety to the phosphate groups of lipid A is implicated in bacterial resistance to polymyxin and cationic antimicrobial peptides of the innate immune system. The sequences of the products of the Salmonella typhimurium pmrE and pmrF loci, both of which are required for polymyxin resistance, recently led us to propose a pathway for l-Ara4N biosynthesis from UDP-glucuronic acid (Zhou, Z., Lin, S., Cotter, R. J., and Raetz, C. R. H. (1999) J. Biol. Chem. 274, 18503-18514). We now report that extracts of a polymyxin-resistant mutant of Escherichia coli catalyze the C-4" oxidation and C-6" decarboxylation of [alpha-(32)P]UDP-glucuronic acid, followed by transamination to generate [alpha-(32)P]UDP-l-Ara4N, when NAD and glutamate are added as co-substrates. In addition, the [alpha-(32)P]UDP-l-Ara4N is formylated when N-10-formyltetrahydrofolate is included. These activities are consistent with the proposed functions of two of the gene products (PmrI and PmrH) of the pmrF operon. PmrI (renamed ArnA) was overexpressed using a T7 construct, and shown by itself to catalyze the unprecedented oxidative decarboxylation of UDP-glucuronic acid to form uridine 5'-(beta-l-threo-pentapyranosyl-4"-ulose diphosphate). A 6-mg sample of the latter was purified, and its structure was validated by NMR studies as the hydrate of the 4" ketone. ArnA resembles UDP-galactose epimerase, dTDP-glucose-4,6-dehydratase, and UDP-xylose synthase in oxidizing the C-4" position of its substrate, but differs in that it releases the NADH product.

    Topics: Amino Sugars; Carbohydrate Sequence; Cell Membrane; Cell-Free System; Cytoplasm; Drug Resistance; Escherichia coli; Glutamic Acid; Lipid A; Magnetic Resonance Spectroscopy; Models, Chemical; Molecular Sequence Data; Mutation; NAD; Oxygen; Polymyxins; Protein Binding; Protein Structure, Tertiary; Time Factors; Uridine Diphosphate Glucose; Uridine Diphosphate Glucuronic Acid

2002
Lipid A modifications in polymyxin-resistant Salmonella typhimurium: PMRA-dependent 4-amino-4-deoxy-L-arabinose, and phosphoethanolamine incorporation.
    The Journal of biological chemistry, 2001, Nov-16, Volume: 276, Issue:46

    Lipid A of Salmonella typhimurium can be resolved into multiple molecular species. Many of these substances are more polar than the predominant hexa-acylated lipid A 1,4'-bisphosphate of Escherichia coli K-12. By using new isolation methods, we have purified six lipid A subtypes (St1 to St6) from wild type S. typhimurium. We demonstrate that these lipid A variants are covalently modified with one or two 4-amino-4-deoxy-l-arabinose (l-Ara4N) moieties. Each lipid A species with a defined set of polar modifications can be further derivatized with a palmitoyl moiety and/or a 2-hydroxymyristoyl residue in place of the secondary myristoyl chain at position 3'. The unexpected finding that St5 and St6 contain two l-Ara4N residues accounts for the anomalous structures of lipid A precursors seen in S. typhimurium mutants defective in 3-deoxy-d-manno-octulosonic acid biosynthesis in which only the 1-phosphate group is modified with the l-Ara4N moiety (Strain, S. M., Armitage, I. M., Anderson, L., Takayama, K., Quershi, N., and Raetz, C. R. H. (1985) J. Biol. Chem. 260, 16089-16098). Phosphoethanolamine (pEtN)-modified lipid A species are much less abundant than l-Ara4N containing forms in wild type S. typhimurium grown in broth but accumulate to high levels when l-Ara4N synthesis is blocked in pmrA(C)pmrE(-) and pmrA(C)pmrF(-) mutants. Purification and analysis of selected compounds demonstrate that one or two pEtN moieties may be present. Our findings show that S. typhimurium contains versatile enzymes capable of modifying both the 1- and 4'-phosphates of lipid A with l-Ara4N and/or pEtN groups. PmrA null mutants of S. typhimurium produce lipid A species without any pEtN or l-Ara4N substituents. However, PmrA is not needed for the incorporation of 2-hydroxymyristate or palmitate.

    Topics: Amino Sugars; Bacterial Proteins; Carbohydrate Sequence; Chromatography; Escherichia coli; Ethanolamines; Hydrolysis; Lipid A; Models, Chemical; Molecular Sequence Data; Mutation; Myristic Acids; Palmitic Acid; Protein Binding; Protein Conformation; Salmonella typhimurium; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

2001
An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor.
    The Journal of biological chemistry, 2001, Nov-16, Volume: 276, Issue:46

    Attachment of the cationic sugar 4-amino-4-deoxy-l-arabinose (l-Ara4N) to lipid A is required for the maintenance of polymyxin resistance in Escherichia coli and Salmonella typhimurium. The enzymes that synthesize l-Ara4N and transfer it to lipid A have not been identified. We now report an inner membrane enzyme, expressed in polymyxin-resistant mutants, that adds one or two l-Ara4N moieties to lipid A or its immediate precursors. No soluble factors are required. A gene located near minute 51 on the S. typhimurium and E. coli chromosomes (previously termed orf5, pmrK, or yfbI) encodes the l-Ara4N transferase. The enzyme, renamed ArnT, consists of 548 amino acid residues in S. typhimurium with 12 possible membrane-spanning regions. ArnT displays distant similarity to yeast protein mannosyltransferases. ArnT adds two l-Ara4N units to lipid A precursors containing a Kdo disaccharide. However, as shown by mass spectrometry and NMR spectroscopy, it transfers only a single l-Ara4N residue to the 1-phosphate moiety of lipid IV(A), a precursor lacking Kdo. Proteins with full-length sequence similarity to ArnT are present in genomes of other bacteria thought to synthesize l-Ara4N-modified lipid A, including Pseudomonas aeruginosa and Yersinia pestis. As shown in the following article (Trent, M. S., Ribeiro, A. A., Doerrler, W. T., Lin, S., Cotter, R. J., and Raetz, C. R. H. (2001) J. Biol. Chem. 276, 43132-43144), ArnT utilizes the novel lipid undecaprenyl phosphate-alpha-l-Ara4N as its sugar donor, suggesting that l-Ara4N transfer to lipid A occurs on the periplasmic side of the inner membrane.

    Topics: Amino Sugars; Bacterial Proteins; Carbohydrate Sequence; Cell Membrane; Chromatography; Escherichia coli; Ethanolamines; Hexosyltransferases; Hydrolysis; Intracellular Membranes; Lipid A; Magnetic Resonance Spectroscopy; Models, Biological; Models, Chemical; Molecular Sequence Data; Mutation; Myristic Acids; Palmitic Acid; Polymyxins; Protein Binding; Protein Conformation; Salmonella typhimurium; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

2001
Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli: structural characterization and transfer to lipid A in the periplasm.
    The Journal of biological chemistry, 2001, Nov-16, Volume: 276, Issue:46

    Polymyxin-resistant mutants of Escherichia coli and Salmonella typhimurium accumulate a novel minor lipid that can donate 4-amino-4-deoxy-l-arabinose units (l-Ara4N) to lipid A. We now report the purification of this lipid from a pss(-) pmrA(C) mutant of E. coli and assign its structure as undecaprenyl phosphate-alpha-l-Ara4N. Approximately 0.2 mg of homogeneous material was isolated from an 8-liter culture by solvent extraction, followed by chromatography on DEAE-cellulose, C18 reverse phase resin, and silicic acid. Matrix-assisted laser desorption ionization/time of flight mass spectrometry in the negative mode yielded a single species [M - H](-) at m/z 977.5, consistent with undecaprenyl phosphate-alpha-l-Ara4N (M(r) = 978.41). (31)P NMR spectroscopy showed a single phosphorus atom at -0.44 ppm characteristic of a phosphodiester linkage. Selective inverse decoupling difference spectroscopy demonstrated that the undecaprenyl phosphate group is attached to the anomeric carbon of the l-Ara4N unit. One- and two-dimensional (1)H NMR studies confirmed the presence of a polyisoprene chain and a sugar moiety with chemical shifts and coupling constants expected for an equatorially substituted arabinopyranoside. Heteronuclear multiple-quantum coherence spectroscopy analysis demonstrated that a nitrogen atom is attached to C-4 of the sugar residue. The purified donor supports in vitro conversion of lipid IV(A) to lipid II(A), which is substituted with a single l-Ara4N moiety. The identification of undecaprenyl phosphate-alpha-l-Ara4N implies that l-Ara4N transfer to lipid A occurs in the periplasm of polymyxin-resistant strains, and establishes a new enzymatic pathway by which Gram-negative bacteria acquire antibiotic resistance.

    Topics: Amino Sugars; Anti-Bacterial Agents; Bacterial Proteins; Carbohydrate Sequence; Carbohydrates; Cell Nucleus; Cell-Free System; Chromatography; DEAE-Cellulose; Escherichia coli; Ethanolamines; Hydrolysis; Lipid A; Lipids; Magnetic Resonance Spectroscopy; Models, Chemical; Molecular Sequence Data; Mutation; Myristic Acids; Palmitic Acid; Periplasm; Phosphorus; Polymyxins; Protein Binding; Protein Conformation; Protein Prenylation; Salmonella typhimurium; Silicic Acid; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

2001
High-resolution NMR spectroscopy of lipid A molecules containing 4-amino-4-deoxy-L-arabinose and phosphoethanolamine substituents. Different attachment sites on lipid A molecules from NH4VO3-treated Escherichia coli versus kdsA mutants of Salmonella typhi
    The Journal of biological chemistry, 2000, May-05, Volume: 275, Issue:18

    When Escherichia coli are grown on LB broth containing 25 mm NH(4)VO(3), complex modifications to the lipid A anchor of lipopolysaccharide are induced. Six modified lipid As (EV1-EV6) have been purified. Many of these variants possess 4-amino-4-deoxy-l-arabinose (l-Ara4N) and/or phosphoethanolamine (pEtN) substituents. Here we use NMR spectroscopy to investigate the attachment sites of the l-Ara4N and pEtN moieties on underivatized, intact EV3 and EV6 and on precursors II(A) and III(A) from kdsA mutants of Salmonella. CDCl(3)/CD(3)OD/D(2)O (2:3:1, v/v) is shown to be a superior solvent for homo- and heteronuclear one- and two-dimensional NMR experiments. The latter were not feasible previously because available solvents caused sample decomposition. Selective inverse decoupling difference spectroscopy is used to determine the attachment sites of substituents on EV3, EV6, II(A), and III(A). l-Ara4N is attached via a phosphodiester linkage to the 4'-phosphates of EV3 and EV6 and has the beta anomeric configuration. pEtN is attached by a pyrophosphate linkage to the 1-phosphate of EV6. The l-Ara4N and pEtN substituents of lipids II(A) and III(A) are attached in the opposite manner, with l-Ara4N on the 1-phosphate of II(A) and pEtN on the 4'-phosphate of III(A). Determination of the proper attachment sites of these substituents is necessary for elucidating the enzymology of lipid A biosynthesis and for characterizing polymyxin-resistant mutants, in which l-Ara4N and pEtN substituents are greatly increased.

    Topics: Aldehyde-Lyases; Amino Sugars; Escherichia coli; Ethanolamines; Lipid A; Magnetic Resonance Spectroscopy; Mutation; Salmonella typhimurium

2000
Lipid A modifications characteristic of Salmonella typhimurium are induced by NH4VO3 in Escherichia coli K12. Detection of 4-amino-4-deoxy-L-arabinose, phosphoethanolamine and palmitate.
    The Journal of biological chemistry, 1999, Jun-25, Volume: 274, Issue:26

    Two-thirds of the lipid A in wild-type Escherichia coli K12 is a hexa-acylated disaccharide of glucosamine in which monophosphate groups are attached at positions 1 and 4'. The remaining lipid A contains a monophosphate substituent at position 4' and a pyrophosphate moiety at position 1. The biosynthesis of the 1-pyrophosphate unit is unknown. Its presence is associated with lipid A translocation to the outer membrane (Zhou, Z., White, K. A., Polissi, A., Georgopoulos, C., and Raetz, C. R. H. (1998) J. Biol. Chem. 273, 12466-12475). To determine if a phosphatase regulates the amount of the lipid A 1-pyrophosphate, we grew cells in broth containing nonspecific phosphatase inhibitors. Na2WO4 and sodium fluoride increased the relative amount of the 1-pyrophosphate slightly. Remarkably, NH4VO3-treated cells generated almost no 1-pyrophosphate, but made six major new lipid A derivatives (EV1 to EV6). Matrix-assisted laser desorption ionization/time of flight mass spectrometry of purified EV1 to EV6 indicated that these compounds were lipid A species substituted singly or in combination with palmitoyl, phosphoethanolamine, and/or aminodeoxypentose residues. The aminodeoxypentose residue was released by incubation in chloroform/methanol (4:1, v/v) at 25 degrees C, and was characterized by 1H NMR spectroscopy. The chemical shifts and vicinal coupling constants of the two anomers of the aminodeoxypentose released from EV3 closely resembled those of synthetic 4-amino-4-deoxy-L-arabinose. NH4VO3-induced lipid A modification did not require the PhoP/PhoQ two-component regulatory system, and also occurred in E. coli msbB or htrB mutants. The lipid A variants that accumulate in NH4VO3-treated E. coli K12 are the same as many of those normally found in untreated Salmonella typhimurium and Salmonella minnesota, demonstrating that E. coli K12 has latent enzyme systems for synthesizing these important derivatives.

    Topics: Amino Sugars; Carbohydrate Sequence; Escherichia coli; Ethanolamines; Lipid A; Magnetic Resonance Spectroscopy; Molecular Sequence Data; Palmitates; Phosphoric Monoester Hydrolases; Salmonella typhimurium; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Vanadates

1999
Lipopolysaccharides of polymyxin B-resistant mutants of Escherichia coli are extensively substituted by 2-aminoethyl pyrophosphate and contain aminoarabinose in lipid A.
    Molecular microbiology, 1995, Volume: 16, Issue:2

    Lipopolysaccharides (LPS) of two polymyxin-resistant (pmr) mutants and the corresponding parent strain of Escherichia coli were chemically analysed for composition and subjected to 31P-NMR (nuclear magnetic resonance) for assessment of phosphate substitution. Whereas the saccharide portions, fatty acids, and phosphate contents were similar in wild-type and pmr LPS, the latter contained two- to threefold higher amounts of 2-aminoethanol. The pmr LPS also contained 4-amino-4-deoxy-L-arabinopyranose (L-Arap4N), which is normally not a component of E. coli LPS. This aminopentose has been assigned to be linked to the 4'-phosphate of lipid A. Comparative 31P-NMR analysis of the de-O-acylated LPS of the wild-type and pmr strains revealed that phosphate groups of the pmr LPS were mainly (71-79%) diphosphate diesters, which accounted for only 20% in the wild-type LPS. Diphosphate monoesters were virtually nonexistent in the pmr LPS, whereas they accounted for 42% of all phosphates in wild-type LPS. In the lipid A of the pmr strains, the 4'-phosphate was to a significant degree (35%) substituted by L-Arap4N, whereas in the wild-type LPS the L-ArapN was absent. In the pmr lipid A, 2-aminoethanol was completely substituting the glycosidic pyrophosphate but not the glycosidic monophosphate, forming a diphosphate diester linkage at this position in 40% of lipid A molecules. In the wild-type LPS the glycosidic position of lipid A carried mostly unsubstituted monophosphate and pyrophosphate. Thus the polymyxin resistance was shown to be associated, along with the esterification of the lipid A 4'-monophosphate by aminoarabinose, with extensive esterification of diphosphates in LPS by 2-aminoethanol.

    Topics: Amino Sugars; Arabinose; Diphosphates; Drug Resistance, Microbial; Escherichia coli; Ethanolamine; Ethanolamines; Lipid A; Lipopolysaccharides; Magnetic Resonance Spectroscopy; Mutation; Phosphates; Polymyxin B

1995
4-Amino-4-deoxy-L-arabinose in LPS of enterobacterial R-mutants and its possible role for their polymyxin reactivity.
    FEMS immunology and medical microbiology, 1994, Volume: 8, Issue:4

    The content of 4-amino-4-deoxy-L-arabinopyranose (L-Arap4N) and the phosphate substitution pattern of the LPS of various strains from Salmonella minnesota, Yersinia enterocolitica and Proteus mirabilis was determined by GC/MS, HPLC and 31P-NMR. These data allowed us to examine the possible role of these components for the polymyxin B-binding capacity of LPS and for the minimal inhibiting concentration (MIC) and the minimal bactericidal concentration (MBC) of polymyxins B and E towards the respective R-mutants. Contrary to other investigated Re-, Rd- and Rc-mutants of S. minnesota, strain R595 (Re-mutant) showed about a 90% substitution of the ester-linked phosphate-group with L-Arap4N, whereas the L-Arap4N content of the other S. minnesota strains amounted to 17-25%. Neither the binding capacity of LPS to polymyxin B, determined by a bioassay, nor the MIC- and MBC-values of the R-mutants were significantly affected by this alteration. Similar results were obtained after using the temperature-dependent changes in the L-Arap4N-content and phosphate substitution pattern of Y. enterocolitica 75R. In order to explore the relevant polymyxin B binding site, lipid A samples with or without substitution of their ester-linked phosphate group were prepared and subjected to the polymyxin-binding assay. The results obtained so far indicated that the inner core bound L-Arap4N, detected in all resistant strains investigated, may play a decisive role in the decreased binding of polymyxin B, responsible for the bacterial resistance towards polymyxin(s).

    Topics: Amino Sugars; Enterobacteriaceae; Lipid A; Lipopolysaccharides; Microbial Sensitivity Tests; Mutation; Polymyxins; Sugar Acids

1994
Chemical structure of the lipid A component of lipopolysaccharides of the genus Pectinatus.
    European journal of biochemistry, 1994, Aug-15, Volume: 224, Issue:1

    The chemical structure of the lipid A components of smooth-type lipopolysaccharides isolated from the type strains of strictly anaerobic beer-spoilage bacteria Pectinatus cerevisiiphilus and Pectinatus frisingensis were analyzed. The hydrophilic backbone of lipid A was shown, by controlled degradation of lipopolysaccharide combined with chemical assays and 31P-NMR spectroscopy, to consist of the common beta 1-6-linked disaccharide of pyranosidic 2-deoxy-glucosamine (GlcN), phosphorylated at the glycosidic position and at position 4'. In de-O-acylated lipopolysaccharide, the latter phosphate was shown to be quantitatively substituted with 4-amino-4-deoxyarabinose, whereas the glycosidically linked phosphate was present as a monoester. Laser-desorption mass spectrometry of free dephosphorylated lipid A revealed that the distal (non-reducing) GlcN was substituted at positions 2' and 3' with (R)-3-(undecanoyloxy)tridecanoic acid, whereas the reducing GlcN carried two unsubstituted (R)-3-hydroxytetradecanoic acids at positions 2 and 3. The lipid A of both Pectinatus species were thus of the asymmetric hexaacyl type. The linkage of lipid A to polysaccharide in the lipopolysaccharide was relatively resistant to acid-catalyzed hydrolysis, enabling the preparation of a dephosphorylated and deacylated saccharide backbone. Methylation analysis of the backbone revealed that position 6' of the distal GlcN of lipid A was the attachment site of the polysaccharide. Despite the quantitative substitution of the lipid A 4'-phosphate by 4-amino-4-deoxyarabinose, which theoretically should render the bacteria resistant to polymyxin, P. cerevisiiphilus was shown to be susceptible to this antibiotic. P. cerevisiiphilus was, however, also susceptibile to vancomycin and bacitracin, indicating that the outer membrane of this bacterium does not act as an effective permeability barrier.

    Topics: Amino Sugars; Bacitracin; Bacteroidaceae; Carbohydrate Sequence; Cell Membrane Permeability; Glycosylation; Lipid A; Magnetic Resonance Spectroscopy; Methylation; Molecular Sequence Data; Phosphates; Phosphorylation; Polymyxin B; Polysaccharides, Bacterial; Vancomycin

1994
Structural studies of lipid A from Pseudomonas aeruginosa PAO1: occurrence of 4-amino-4-deoxyarabinose.
    Journal of bacteriology, 1990, Volume: 172, Issue:12

    Lipid A derived from Pseudomonas aeruginosa PAO1 contains a biphosphorylated 1-6-linked glucosamine disaccharide backbone. The reducing glucosamine has an unsubstituted glycosidically linked phosphate at C-1. The nonreducing glucosamine has an ester-bound phosphate at C-4' which is nonstoichiometrically substituted with 4-amino-4-deoxyarabinose. Induction of 4-amino-4-deoxyarabinose was dependent on cultural conditions. No pyrophosphate groups were detected. Acyloxyacyl diesters are formed by esterification of the amide-bound 3-hydroxydodecanoic acid with dodecanoic acid and 2-hydroxydodecanoic acids in an approximate molar ratio of 2:1. Dodecanoic and 3-hydroxydecanoic acids are esterified to positions C-3 and C-3' in the sugar backbone. All hydroxyl groups of the glucosamine disaccharide except C-4 and C-6' are substituted. Lipopolysaccharide chemical analyses measured glucose, rhamnose, heptose, galactosamine, alanine, phosphate, and glucosamine. The proposed lipid A structure differs from previous models. There are significant differences in acyloxyacyl diesters, and the proposed model includes an aminopentose substituent.

    Topics: Amino Sugars; Arabinose; Fatty Acids; Lipid A; Lipopolysaccharides; Magnetic Resonance Spectroscopy; Molecular Structure; Pseudomonas aeruginosa

1990
A convenient synthesis of 4-amino-4-deoxy-L-arabinose and its reduction product, 1,4-dideoxy-1,4-imino-L-arabinitol.
    Carbohydrate research, 1988, Aug-15, Volume: 179

    Methyl beta-D-xylopyranoside in a mixture of N,N-dimethylformamide and 2-methoxypropene containing a little hydrogen chloride gave preponderantly the 2,3-O-isopropylidene derivative, which was readily converted into its 4-trifluoromethanesulfonate. The facile displacement of the triflate group gave a 4-azido-4-deoxy-alpha-L-arabinopyranoside derivative, and this, on mild acid treatment, was hydrolyzed to the 2,3-diol, or under more vigorous conditions to 4-azido-4-deoxy-L-arabinose. Methyl 2,3-di-O-acetyl-4-azido-4-deoxy-alpha-L-arabinopyranoside, from the diol, appears (1H-n.m.r. data) to exist as an equilibrating mixture of the 4C1 and 1C4 conformers in chloroform solution. The reduction of the azido sugar by hydrogen over Pd/C in .6M HCl yielded 4-amino-4-deoxy-L-arabinopyranose as its hydrochloride; in 0.1M HCl, further reactions occurred to give 1,4-dideoxy-1,4-imino-L-arabinitol as the final product. The aminodeoxypentose from lipid A precursor IIA, isolated from a Salmonella mutant by Raetz et al. in 1985, was shown to be identical with the synthetic aminoarabinose by t.l.c., 1H-n.m.r. spectroscopy, and g.l.c. of the acetylated reduction products.

    Topics: Amino Sugars; Arabinose; Carbohydrate Conformation; Chemical Phenomena; Chemistry; Chromatography, Thin Layer; Glycolipids; Imino Furanoses; Lipid A; Magnetic Resonance Spectroscopy; Molecular Structure; Oxidation-Reduction; Salmonella typhimurium; Sugar Alcohols

1988
Lipopolysaccharide of Providencia rettgeri. Chemical studies and taxonomical implications.
    Archives of microbiology, 1986, Volume: 144, Issue:3

    The chemical constitutional analysis of the lipopolysaccharide (LPS) isolated from Providencia rettgeri was carried out. Polyacrylamide gel electrophoresis using sodium dodecylsulfate or sodium deoxycholate showed that the lipopolysaccharide mostly consisted of short sugar chains. The lipid A was precipitated out after mild acid hydrolysis of LPS. From the supernatant degraded polysaccharide and unsubstituted core fractions were isolated. Compositional analysis of the core material revealed the presence of galacturonic acid, galactose, glucose, glucosamine, L-glycero-D-manno-heptose, 3-deoxy-D-manno-octulosonic acid, alanine and phosphorus. Methylation analysis of the core material indicated the presence of terminal units of glucose, galacturonic acid and glucosamine. The chemical structure of the lipid A was elucidated. It constitutes a beta-1,6-glucosamine disaccharide substituted on either side by ester and glycosidically-bond phosphate residues. The ester-bound phosphate was found to be substituted by a 4-amino-4-deoxy-L-arabinosyl residue. The amino groups of the backbone disaccharide are N-acylated by 3-O-(14:0)14:0 and 3-O-14:0. Two hydroxyl groups of the disaccharide are esterified by 3-O-(14:0)14:0 and 3-O-14:0. The taxonomical importance of these structural details will be discussed.

    Topics: Amino Sugars; Electrophoresis, Polyacrylamide Gel; Fatty Acids; Lipid A; Lipopolysaccharides; Proteus; Proteus mirabilis; Providencia; Salmonella typhimurium

1986
Chemical structure of the lipid A component of the lipopolysaccharide from a Proteus mirabilis Re-mutant.
    European journal of biochemistry, 1983, Dec-01, Volume: 137, Issue:1-2

    The chemical structure of the lipid A component from the lipopolysaccharide of a Proteus mirabilis Re-mutant (strain R45) was analysed. It consists of a beta(1-6)-linked D-glucosamine disaccharide which carries two phosphate groups, one being ester-linked to position 4' of the nonreducing glucosaminyl residue and the other being bound to the glycosidic hydroxyl group of the reducing glucosaminyl residue. The ester-bound phosphate group is quantitatively substituted by a 4-amino-4-deoxy-L-arabinopyranosyl residue, the glycosidic phosphoryl group appears to be unsubstituted. Two available hydroxyl groups of the disaccharadide (probably at positions 3 and 3') are acylated by approximately 1 mol each of (R)-3-tetradecanoyloxytetradecanoic and (R)-3-hydroxytetradecanoic acid/mol. The amino group of the nonreducing glucosaminyl residue carries (R)-3-tetradecanoyloxytetradecanoic and that of the reducing residue (R)-3-hydroxytetradecanoic acid. In addition smaller amounts of (R)-3-hexadecanoyloxytetradecanoic acid are present in amide linkage. The attachment site of the oligosaccharide portion to lipid A was also investigated. It was found that the hydroxyl group at position 6' of the nonreducing glucosaminyl residue carries 3-deoxy-D-manno-octulosonic acid. This indicates that the saccharide portion in this Proteus lipopolysaccharide is linked to lipid A via the primary hydroxyl group in position 6'.

    Topics: Amino Sugars; Chemical Phenomena; Chemistry; Fatty Acids; Glucosamine; Lipid A; Methylation; Mutation; Proteus mirabilis

1983