linoleic-acid-hydroperoxide and 13-hydroperoxy-9-11-octadecadienoic-acid

linoleic-acid-hydroperoxide has been researched along with 13-hydroperoxy-9-11-octadecadienoic-acid* in 5 studies

Other Studies

5 other study(ies) available for linoleic-acid-hydroperoxide and 13-hydroperoxy-9-11-octadecadienoic-acid

ArticleYear
Elucidation of decomposition pathways of linoleic acid hydroperoxide isomers by GC-MS and LC-MS/MS.
    Bioscience, biotechnology, and biochemistry, 2023, Jan-24, Volume: 87, Issue:2

    Food lipid oxidation provides various volatile compounds involved in food flavor via the decomposition of lipid hydroperoxide (LOOH). This study predicted the pathways which can coherently explain LOOH decomposition focusing on hydroperoxy octadecadienoic acid (HpODE) isomers (9-EZ-HpODE, 9-EE-HpODE, 10-HpODE, 12-HpODE, 13-ZE-HpODE, and 13-EE-HpODE) which are the major LOOH contained in edible oils. Each standard was first prepared and thermally decomposed. Generated volatile and non-volatile compounds were analyzed by GC-MS and LC-MS/MS. The results showed that all HpODE decomposition was based on the factors such as favorable scission, radical delocalization, and cyclization. Interestingly, the formation of 8-HpODE and 14-HpODE were demonstrated during HpODE decomposition. The insights obtained in this study would explain the generation pathways of flavor involved in food quality.

    Topics: Chromatography, Liquid; Gas Chromatography-Mass Spectrometry; Linoleic Acids; Lipid Peroxides; Tandem Mass Spectrometry

2023
Angiotensin II modification by decomposition products of linoleic acid-derived lipid hydroperoxide.
    Chemico-biological interactions, 2015, Sep-05, Volume: 239

    Polyunsaturated fatty acids are highly susceptible to oxidation induced by reactive oxygen species and enzymes, leading to the formation of lipid hydroperoxides. The linoleic acid (LA)-derived hydroperoxide, 13-hydroperoxyoctadecadienoic acid (HPODE) undergoes homolytic decomposition to reactive aldehydes, 4-oxo-2(E)-nonenal (ONE), 4-hydroxy-2(E)-nonenal, trans-4,5-epoxy-2(E)-decenal (EDE), and 4-hydroperoxy-2(E)-nonenal (HPNE), which can covalently modify peptides and proteins. ONE and HNE have been shown to react with angiotensin (Ang) II (DRVYIHPF) and modify the N-terminus, Arg(2), and His(6). ONE-derived pyruvamide-Ang II (Ang P) alters the biological activities of Ang II considerably. The present study revealed that EDE and HPNE preferentially modified the N-terminus and His(6) of Ang II. In addition to the N-substituted pyrrole of [N-C4H2]-Ang II and Michael addition products of [His(6)(EDE)]-Ang II, hydrated forms were detected as major products, suggesting considerable involvement of the vicinal dihydrodiol (formed by epoxide hydration) in EDE-derived protein modification in vivo. Substantial amounts of [N-(EDE-H2O)]-Ang II isomers were also formed and their synthetic pathway might involve the tautomerization of a carbinolamine intermediate, followed by intramolecular cyclization and dehydration. The main HPNE-derived products were [His(6)(HPNE)]-Ang II and [N-(HPNE-H2O)]-Ang II. However, ONE, HNE, and malondialdehyde-derived modifications were dominant, because HPNE is a precursor of these aldehydes. A mixture of 13-HPODE and [(13)C18]-13-HPODE (1:1) was then used to determine the major modifications derived from LA peroxidation. The characteristic doublet (1:1) observed in the mass spectrum and the mass difference of the [M+H](+) doublet aided the identification of Ang P (N-terminal α-ketoamide), [N-ONE]-Ang II (4-ketoamide), [Arg(2)(ONE-H2O)]-Ang II, [His(6)(HNE)]-Ang II (Michael addition product), [N-C4H2]-Ang II (EDE-derived N-substituted pyrrole), [His(6)(HPNE)]-Ang II, [N-(9,12-dioxo-10(E)-dodecenoic acid)]-Ang II, and [His(6)(9-hydroxy-12-oxo-10(E)-decenoic acid)]-Ang II as the predominant LA-derived modifications. These modifications could represent the majority of lipid-derived modifications to peptides and proteins in biological systems.

    Topics: Aldehydes; Angiotensin II; Ascorbic Acid; Aspartame; Carbon Isotopes; Epoxy Compounds; Isomerism; Linoleic Acids; Lipid Peroxides; Malondialdehyde; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry

2015
Enhancement by cigarette smoke extract of the radical formation in a reaction mixture of 13-hydroperoxide octadecadienoic acid and ferric ions.
    Journal of biochemistry, 2006, Volume: 139, Issue:4

    The effects of cigarette smoke extract on radical formation were examined in reaction mixtures containing 13-hydroperoxide octadecadienoic acid (13-HPODE), FeCl3, cigarette smoke extract, ethylenediaminetetraacetic acid (EDTA), alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN), and phosphate buffer (pH 7.4). Cigarette smoke extract enhanced the formation of both 7-carboxyheptyl and pentyl radicals in the reaction. Ferric ions were reduced in the reaction mixture, suggesting that cigarette smoke extract enhances the formation of 7-carboxyheptyl and pentyl radicals by reducing ferric irons. Although there is a large body of evidence supporting the involvement of radicals such as the semiquinone radical, hydroxyl radical, superoxide radical, nitric oxide radicals in smoking-related diseases, the enhancement by cigarette smoke of lipid-derived radical formation, which we first report here, may be one of the other causes of smoking-related diseases.

    Topics: Chromatography, High Pressure Liquid; Electron Spin Resonance Spectroscopy; Fatty Acids, Unsaturated; Ferric Compounds; Ferrous Compounds; Free Radicals; Linoleic Acids; Lipid Peroxidation; Lipid Peroxides; Mass Spectrometry; Models, Chemical; Nicotiana; Smoke; Superoxide Dismutase

2006
Incorporation of arachidonic and linoleic acid hydroperoxides into cultured human umbilical vein endothelial cells.
    Prostaglandins, leukotrienes, and essential fatty acids, 2004, Volume: 70, Issue:6

    The current study assessed the differential incorporation of 12-hydroperoxyeicosatetraenoic acid (12-HPETE), arachidonic acid (AA), 12-hydroxyeicosatetraenoic acid (12-HETE) and the linoleic acid (LA) oxidation products, 13-hydroxyoctadecadienoic acid (13-HODE) and 13-hydroperoxyoctadecadienoic acid (13-HPODE), into human umbilical vein endothelial cells (HUVEC). Approximately 80-90% of AA (10(-8)-10(-5)M) and 80% of LA (10(-8)-10(-5)M) were incorporated into HUVEC within 12h, while less than 50% of the hydroxy metabolites (12-HETE, 12-HPETE, 13-HODE, 13-HPODE) were incorporated into HUVEC over 48h. Further, treatment of HUVEC with either 12-HPETE or 13-HPODE (concentrations of 10(-5)M) had no effect on cell number at a 48h time point when compared with control. These results demonstrate that exogeneous hydroxy metabolites are incorporated into HUVEC to a lesser degree than were endogenous fatty acids. Further, we speculate that 12-HPETE and 13-HPODE are rapidly metabolized to substances without significant cytotoxic effects.

    Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Arachidonic Acid; Cells, Cultured; Endothelial Cells; Humans; Leukotrienes; Linoleic Acids; Lipid Peroxides; Umbilical Veins

2004
Cytochrome c catalyses the formation of pentyl radical and octanoic acid radical from linoleic acid hydroperoxide.
    The Biochemical journal, 2002, Jan-01, Volume: 361, Issue:Pt 1

    A reaction of 13-hydroperoxide octadecadienoic acid (13-HPODE) with cytochrome c was analysed using ESR, HPLC-ESR and HPLC-ESR-MS by the combined use of the spin-trapping technique. The ESR, HPLC-ESR and HPLC-ESR-MS analyses showed that cytochrome c catalyses formation of pentyl and octanoic acid radicals from 13-HPODE. On the other hand, only the alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone/octanoic acid radical adduct was detected in the elution profile of HPLC-ESR for a mixture of 13-HPODE with haematin, indicating that haematin catalyses the formation of octanoic acid radical. In addition, the reaction of 13-HPODE with cytochrome c was inhibited by chlorogenic acid, caffeic acid and ferulic acid via two possible mechanisms, i.e. reducing cytochrome c (chlorogenic acid and caffeic acid) and scavenging the radical intermediates (chlorogenic acid, caffeic acid and ferulic acid).

    Topics: Animals; Caffeic Acids; Caprylates; Chlorogenic Acid; Chromatography, High Pressure Liquid; Coumaric Acids; Cyanides; Cytochrome c Group; Electron Spin Resonance Spectroscopy; Flavonoids; Free Radical Scavengers; Free Radicals; Hemin; In Vitro Techniques; Linoleic Acids; Lipid Peroxides; Mass Spectrometry; Models, Biological; Oxidation-Reduction; Pentanes; Phenols; Polymers; Polyphenols; Spectrophotometry

2002