linoleic-acid has been researched along with tripalmitin* in 2 studies
2 other study(ies) available for linoleic-acid and tripalmitin
Article | Year |
---|---|
Enzymatic interesterification of tripalmitin with vegetable oil blends for formulation of caprine milk infant formula analogs.
The structure of triacylglycerols in vegetable oil blends was enzymatically modified, and the blends were incorporated into skim caprine milk to produce goat milk-based infant formula analogs, homologous to human milk. A modified lipid containing palmitic, oleic, and linoleic acids, resembling the composition of human milk fat, was synthesized by enzymatic interesterification reactions between tripalmitin and a vegetable oil blend containing a 2.5:1.1:0.8 ratio of coconut, safflower, and soybean oils. A commercial sn-1,3-specific lipase obtained from Rhyzomucor miehei, Lipozyme RM IM, was used as the biocatalyst. The effects of substrate molar ratio and reaction time on the incorporation of palmitic, oleic, and linoleic acids at the sn-2 position of the triacylglycerols were investigated. The fatty acid composition and sn-2 position of the experimental formulas were analyzed using gas chromatography. Results showed that the highest incorporation of palmitic acid was obtained at 12 h of incubation at 55 degrees C with a substrate molar ratio of 1:0.4 of tripalmitin to vegetable oil blend. However, the modified milk interesterified for 12 h at a 1:1 molar ratio had a greater resemblance to human milk compared with the other formulas. The level of oleic acid incorporation at the sn-2 position increased with the molar ratio of tripalmitin to vegetable oil blend. It was concluded that, unlike the original goat milk and other formulas, the formulated caprine milk with a molar ratio of 1:1 and a 12-h incubation was similar to the fatty acid composition of human milk. Topics: Animals; Chromatography, Gas; Esterification; Fatty Acids; Fatty Acids, Unsaturated; Female; Goats; Humans; Infant Formula; Linoleic Acid; Lipase; Milk; Milk, Human; Oleic Acid; Palmitic Acid; Plant Oils; Stearic Acids; Triglycerides | 2007 |
Adverse physicochemical properties of tripalmitin in beta cells lead to morphological changes and lipotoxicity in vitro.
Long-term exposure of beta cells to lipids, particularly saturated fatty acids in vitro, results in cellular dysfunction and apoptosis (lipotoxicity); this could contribute to obesity-related diabetes. Our aims were to relate cell death to intracellular triglyceride concentration, composition and localisation following incubation of INS1 cells in saturated and unsaturated NEFA in high and low glucose concentrations.. Insulin-producing INS1 cells were cultured (24 h; 3 and 20 mmol/l glucose) with palmitic, oleic or linoleic acids and the resulting intracellular lipids were analysed by gas chromatography and microscopy. Cell death was determined by quantitative microscopy and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and glucose-stimulated insulin secretion by ELISA.. All NEFA (0.5 mmol/l, 0.5% albumin) inhibited glucose-stimulated (20 mmol/l) insulin secretion. Cytotoxicity was evident only with palmitic acid (p<0.05), in which case intracellular triglyceride consisted largely of tripalmitin in angular-shaped dilated endoplasmic reticulum. Cytotoxicity and morphological disruption were reduced by addition of unsaturated NEFA. Triglyceride content (control cells; 14.5 ng/mug protein) increased up to 10-fold following incubation in NEFA (oleic acid 153.2 ng/mug protein; p<0.05) and triglyceride and phospholipid fractions were both enriched with the specific fatty acid added to the medium (p<0.05).. In INS1 cells, palmitic acid is converted in the endoplasmic reticulum to solid tripalmitin (melting point >65 degrees C), which could induce endoplasmic reticulum stress proteins and signal apoptosis; lipid-induced apoptosis would therefore be a consequence of the physicochemical properties of these triglycerides. Since cellular triglycerides composed of single species of fatty acid are not likely to occur in vivo, destruction of beta cells by saturated fatty acids could be predominantly an in vitro scenario. Topics: Animals; Apoptosis; Cell Line, Tumor; Cell Survival; Chlorocebus aethiops; COS Cells; Fatty Acids, Nonesterified; Glucose; Insulin; Insulin Secretion; Insulinoma; Linoleic Acid; Mice; Oleic Acid; Palmitic Acid; Pancreatic Neoplasms; Phospholipids; Triglycerides | 2005 |