linoleic-acid and protocatechuic-acid

linoleic-acid has been researched along with protocatechuic-acid* in 3 studies

Other Studies

3 other study(ies) available for linoleic-acid and protocatechuic-acid

ArticleYear
Antioxidant and DNA damage protection potentials of selected phenolic acids.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2015, Volume: 77

    In this study, ten different phenolic acids (caffeic, chlorogenic, cinnamic, ferulic, gallic, p-hydroxybenzoic, protocatechuic, rosmarinic, syringic, and vanillic acids) were evaluated for their antioxidant and DNA damage protection potentials. Antioxidant activity was evaluated by using four different test systems named as β-carotene bleaching, DPPH free radical scavenging, reducing power and chelating effect. In all test systems, rosmarinic acid showed the maximum activity potential, while protocatechuic acid was determined as the weakest antioxidant in β-carotene bleaching, DPPH free radical scavenging, and chelating effect assays. Phenolic acids were also screened for their protective effects on pBR322 plasmid DNA against the mutagenic and toxic effects of UV and H2O2. Ferulic acid was found as the most active phytochemical among the others. Even at the lowest concentration value (0.002 mg/ml), ferulic acid protected all of the bands in the presence of H2O2 and UV. It is followed by caffeic, rosmarinic, and vanillic acids. On the other hand, cinnamic acid (at 0.002 mg/ml), gallic acid (at 0.002 mg/ml), p-hydroxybenzoic acid (at 0.002 and 0.004 mg/ml), and protocatechuic acid (at 0.002 and 0.004 mg/ml) could not protect plasmid DNA.

    Topics: Antioxidants; beta Carotene; Cinnamates; Coumaric Acids; Depsides; DNA Damage; Gallic Acid; Hydrogen Peroxide; Hydroxybenzoates; Linoleic Acid; Phytochemicals; Rosmarinic Acid; Ultraviolet Rays; Vanillic Acid

2015
Antioxidant activity of phenolic compounds isolated from Mesona procumbens Hemsl.
    Journal of agricultural and food chemistry, 2002, May-08, Volume: 50, Issue:10

    The antioxidant activity of phenolic compounds isolated from Mesona procumbens Hemsl. (Hsian-tsao) was investigated. Hsian-tsao was extracted with various solvents, and the results showed that the fraction treated with acidic ethyl acetate (pH 2) possessed large amounts of phenolic compounds and a strong antioxidant activity on peroxidation of linoleic acid. The antioxidant activity (inhibition of peroxidation, IP%) of the acidic ethyl acetate of Hsian-tsao extract at 50 microg/mL (98.9%) was stronger than those of 50 microg/mL alpha-tocopherol (78%) and BHA at 10 microg/mL (90%). When fractionated with Amberlite XAD-7 gel chromatography, the acidic ethyl acetate fraction of Hsian-tsao extract was separated into four subfractions (A-D). Subfraction B, with high yield and strong antioxidant activity, was further isolated and purified and then identified as containing protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, and syringic acid by means of UV, EI-MS, and (1)H and (13)C NMR. The antioxidant capability of isolated compounds was also determined using the thiocyanate system and the erythrocyte ghost system. The results indicate that the phenolic acids could be important antioxidant components in Hsian-tsao, among which caffeic acid with the highest antioxidant activity and the greatest content is most important.

    Topics: Acetates; alpha-Tocopherol; Antioxidants; Caffeic Acids; Drugs, Chinese Herbal; Gallic Acid; Hydroxybenzoates; Linoleic Acid; Magnetic Resonance Spectroscopy; Oxidation-Reduction; Phenols; Plant Extracts; Vanillic Acid

2002
Antioxidant activity of 3,4-DHPEA-EA and protocatechuic acid: a comparative assessment with other olive oil biophenols.
    Redox report : communications in free radical research, 1999, Volume: 4, Issue:3

    Olive oil contains several phenolic compounds with antioxidant activity, whose levels depend strongly on the kind of cultivar grown, fruit ripening effects and the oil extraction process. Therefore, the beneficial effects exerted by olive oil consumption on the resistance of low density lipoproteins (LDLs) to oxidation depend not only on an increased intake of mono-unsaturated fatty acids (e.g. oleate) which are less prone to oxidation, but also phenolic antioxidants. The aim of this study was to analyze in vitro effects exerted on the oxidative modification of Cu-stimulated human LDL by two olive oil biophenols, i.e. 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA) and protocatecuic acid. These compounds have not been investigated in as much detail as the better-known olive oil biophenols - such as tyrosol (p-HPEA), o-coumaric acid, vanillic acid, caffeic acid, oleuropein and 3,4-dihydroxyphenylethanol (3,4-DHPEA). Modification of LDL was tested by measuring the formation of intermediate and end products of lipid peroxidation such as conjugated dienes, lipid hydroperoxides, cholesterol and cholesteryl ester oxides, as well as studying the decrease in oxidizable substrates like polyunsaturated fatty acids. In addition, the increase in LDL negative charges was evaluated. The results demonstrate the two-tested olive oil biophenols show high antioxidant activities. In particular, protocatecuic acid and 3,4-DHPEA-EA show an antioxidant activity comparable with that of caffeic acid, oleuropein and 3,4-DHPEA. They are not only able to retard lipid peroxidation, but also to reduce the extent of its activity.

    Topics: Antioxidants; Arachidonic Acid; Cholesterol; Fatty Acids; Humans; Hydroxybenzoates; Linoleic Acid; Lipid Peroxides; Lipoproteins, LDL; Olive Oil; Phenols; Plant Oils; Pyrans

1999