linoleic-acid has been researched along with methyl-jasmonate* in 5 studies
5 other study(ies) available for linoleic-acid and methyl-jasmonate
Article | Year |
---|---|
Exploring the Effect of Methyl Jasmonate on the Expression of microRNAs Involved in Biosynthesis of Active Compounds of Rosemary Cell Suspension Cultures through RNA-Sequencing.
Our aim in the experiment was to study the effects of methyl jasmonates (MeJA) on the active compounds of rosemary suspension cells, the metabolites' change of contents under different concentrations of MeJA, including 0 (CK), 10 (M10), 50 (M50) and 100 μM MeJA (M100). The results demonstrated that MeJA treatments promoted the accumulation of rosmarinic acid (RA), carnosic acid (CA), flavonoids, jasmonate (JA), gibberellin (GA), and auxin (IAA); but reduced the accumulations of abscisic acid (ABA), salicylic acid (SA), and aspartate (Asp). In addition, 50 and 100 μM MeJA promoted the accumulation of alanine (Ala) and glutamate (Glu), and 50 μM MeJA promoted the accumulation of linoleic acid and alpha-linolenic acid in rosemary suspension cells. Comparative RNA-sequencing analysis of different concentrations of MeJA showed that a total of 30, 61, and 39 miRNAs were differentially expressed in the comparisons of CKvsM10, CKvsM50, CKvsM100, respectively. The analysis of the target genes of the differentially expressed miRNAs showed that plant hormone signal transduction, linoleic acid, and alpha-linolenic acid metabolism-related genes were significantly enriched. In addition, we found that miR160a-5p target Topics: Acetates; alpha-Linolenic Acid; Cyclopentanes; Gene Expression Regulation, Plant; Linoleic Acid; MicroRNAs; Oxylipins; Plant Growth Regulators; Rosmarinus | 2022 |
Physiological and molecular genetic studies on two elicitors for improving the tolerance of six Egyptian soybean cultivars to cotton leaf worm.
Cotton leaf worm (Spodoptera littoralis) is considered one of the most destructive agricultural pests in Egypt. Six soybean cultivars (Giza-21, Giza-22, Giza-35, Giza-82, Giza-83 and Giza-111) were grown under natural infection with cotton leaf worm. The effect of two elicitors, methyl jasmonate and sodium nitroprusside on enhancing the ability of susceptible cultivars to tolerate (Spodoptera littoralis) was studied. Giza-35 and Giza-111 showed tolerance performance under natural infection compared to Giza-22 and Giza-82 as sensitive ones, while Giza-83 and Giza-21 showed moderate tolerance. Both treatments positively affected seed yield and its components and fatty acid composition. Extracted fatty acids showed variable changes in treated plants compared with the untreated controls. Plants treated with the two elicitors showed an increase in Linoleic acid and Linolenic acid fatty acids and decrease in Palmitic acid and Palmitolic acid content. Treatment with methyl jasmonate was found to be more effective than sodium nitroprusside and enhanced resistance of the susceptible cultivars. Eight IRAP and iPBS retrotransposon-based markers were used to detect genetic differences among studied soybean cultivars and to develop molecular genetic markers for cotton leaf worm infestation. The technique successfully identified soybean genotypes in addition to nineteen molecular markers related to soybean tolerance. Topics: Acetates; alpha-Linolenic Acid; Animals; Cyclopentanes; Fatty Acids; Genes, Plant; Genetic Markers; Genotype; Glycine max; Linoleic Acid; Nitroprusside; Oxylipins; Palmitic Acid; Seeds; Spodoptera | 2018 |
Transcriptome changes in Polygonum multiflorum Thunb. roots induced by methyl jasmonate.
Transcriptome profiling has been widely used to analyze transcriptomic variation in plants subjected to abiotic or biotic stresses. Although gene expression changes induced by methyl jasmonate (MeJA) have been profiled in several plant species, no information is available on the MeJA-triggered transcriptome response of Polygonum multiflorum Thunb., a species with highly valuable medicinal properties. In this study, we used transcriptome profiling to investigate transcriptome changes in roots of P. multiflorum seedlings subjected to a 0.25 mmol/L-MeJA root-irrigation treatment. A total of 18 677 differentially expressed genes (DEGs) were induced by MeJA treatment, of which 4535 were up-regulated and 14 142 were down-regulated compared with controls. These DEGs were associated with 125 metabolic pathways. In addition to various common primary and secondary metabolic pathways, several secondary metabolic pathways related to components with significant pharmacological effects were enriched by MeJA, including arachidonic acid metabolism, linoleic acid metabolism, and stilbenoid biosynthesis. The MeJA-induced transcriptome changes uncovered in this study provide a solid foundation for future study of functional genes controlling effective components in secondary metabolic pathways of P. multiflorum. Topics: Acetates; Arachidonic Acid; Cyclopentanes; Fallopia multiflora; Gene Expression Profiling; Gene Expression Regulation, Plant; Genome, Plant; Linoleic Acid; Metabolic Networks and Pathways; Oxylipins; Plant Growth Regulators; Plant Roots; Stilbenes; Transcriptome | 2015 |
Evidence for oxylipin synthesis and induction of a new polyunsaturated fatty acid hydroxylase activity in Chondrus crispus in response to methyljasmonate.
Signaling cascades involving oxygenated derivatives (oxylipins) of polyunsaturated fatty acids (PUFAs) are known to operate in response to external stimuli. The marine red alga Chondrus crispus uses both oxygenated derivatives of C18 (octadecanoids) and C20 (eicosanoids) PUFAs as developmental or defense hormones. The present study demonstrates that methyljasmonate (MeJA) triggers a cascade of oxidation of PUFAs leading to the synthesis of prostaglandins and other oxygenated fatty acids. As a result of a lipoxygenase-like activation, MeJA induces a concomitant accumulation of 13-hydroxy-9Z,11E-octadecadienoic acid (13-HODE) and 13-oxo-9Z,11E-octadecadienoic acid (13-oxo-ODE) in a dose-dependent manner in C. crispus. Furthermore, MeJA increases the level of mRNA encoding a gluthatione S-transferase and induces the activity of a new enzyme catalyzing the regio- and stereoselective bisallylic hydroxylation of polyunsaturated fatty acids from C(18) to C(22). The enzyme selectively oxidized the omega minus 7 carbon position (omega-7) and generated the stereoselective (R)-hydroxylated metabolites with a large enantiomeric excess. The enzyme specificity for the fatty acid recognition was not dependent of the position of double bonds but at least requires a methylene interrupted double bond 1,4-pentadiene motif involving the omega-7 carbon. Topics: Acetates; Algal Proteins; Chondrus; Cyclopentanes; Dinoprostone; DNA Primers; Fatty Acids, Unsaturated; Gas Chromatography-Mass Spectrometry; Kinetics; Linoleic Acid; Mixed Function Oxygenases; Oxylipins; Polymerase Chain Reaction; Prostaglandins A; RNA; Substrate Specificity | 2007 |
The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis.
The Arabidopsis thaliana floral homeotic gene AGAMOUS (AG) plays a central role in reproductive organ (stamen and carpel) development. AG RNA is expressed in the center of floral primordia from a time prior to the initiation of stamen and carpel primordia until late in flower development. While early AG expression acts in specification of stamens and carpels, the role, if any, of continued AG expression in later flower development is unknown. To examine the timing of AG action and its possible late-stage functions, we performed a series of time-course experiments using a transgenic line with inducible AG activity in an ag homozygous mutant background. We show that AG controls late-stage stamen development, including anther morphogenesis and dehiscence, as well as filament formation and elongation. We further show that AG coordinates late stamen maturation by controlling a biosynthetic gene of the lipid-derived phytohormone jasmonic acid (JA). Expression analysis and in vivo binding of AG indicate that AG directly regulates the transcription of a catalytic enzyme of JA, DEFECTIVE IN ANTHER DEHISCENCE1. Our results indicate that stamen identity and differentiation control by AG is achieved by the regulation of different transcriptional cascades in different floral stages, with organ specification induced early, followed by phytohormone biosynthesis to coordinate stamen maturation. Topics: Acetates; AGAMOUS Protein, Arabidopsis; Arabidopsis; Arabidopsis Proteins; Catalysis; Cell Nucleus; Cyclopentanes; Dexamethasone; Flowers; Gene Expression Regulation, Plant; Genes, Plant; Linoleic Acid; Oxylipins; Phospholipases A; Phospholipases A1; Promoter Regions, Genetic; RNA, Messenger; Time Factors | 2007 |