linoleic-acid has been researched along with lysophosphatidic-acid* in 2 studies
1 review(s) available for linoleic-acid and lysophosphatidic-acid
Article | Year |
---|---|
Oxidative stress and cell signalling.
An increasing body of evidence from animal models, human specimens and cell lines points to reactive oxygen species as likely involved in the pathways, which convey both extracellular and intracellular signals to the nucleus, under a variety of pathophysiological conditions. Indeed, reactive oxygen species (ROS), in a concentration compatible with that detectable in human pathophysiology, appear able to modulate a number of kinases and phosphatases, redox sensitive transcription factors and genes. This type of cell signalling consistently implies the additional involvement of other bioactive molecules that stem from ROS reaction with cell membrane lipids. The present review aims to comprehensively report on the most recent knowledge about the potential role of ROS and oxidised lipids in signal transduction processes in the major events of cell and tissue pathophysiology. Among the lipid oxidation products of ROS-dependent reactivity, which appear as candidates for a signalling role, there are molecules generated by oxidation of cholesterol, polyunsaturated fatty acids and phospholipids, as well as lysophosphatidic acid and lysophospholipids, platelet activating factor-like lipids, isoprostanes, sphingolipids and ceramide. Topics: Aldehydes; Animals; Arachidonic Acid; Cell Communication; Growth Substances; Humans; Isoprostanes; Linoleic Acid; Lipid Metabolism; Lysophospholipids; Oxidation-Reduction; Oxidative Stress; Platelet Activating Factor; Protein Serine-Threonine Kinases; Protein-Tyrosine Kinases; Reactive Oxygen Species; Signal Transduction; Transcription Factors | 2004 |
1 other study(ies) available for linoleic-acid and lysophosphatidic-acid
Article | Year |
---|---|
Synthesis of lipid mediators during UVB-induced inflammatory hyperalgesia in rats and mice.
Peripheral sensitization during inflammatory pain is mediated by a variety of endogenous proalgesic mediators including a number of oxidized lipids, some of which serve endogenous modulators of sensory TRP-channels. These lipids are eicosanoids of the arachidonic acid and linoleic acid pathway, as well as lysophophatidic acids (LPAs). However, their regulation pattern during inflammatory pain and their contribution to peripheral sensitization is still unclear. Here, we used the UVB-model for inflammatory pain to investigate alterations of lipid concentrations at the site of inflammation, the dorsal root ganglia (DRGs) as well as the spinal dorsal horn and quantified 21 lipid species from five different lipid families at the peak of inflammation 48 hours post irradiation. We found that known proinflammatory lipids as well as lipids with unknown roles in inflammatory pain to be strongly increased in the skin, whereas surprisingly little changes of lipid levels were seen in DRGs or the dorsal horn. Importantly, although there are profound differences between the number of cytochrome (CYP) genes between mice and rats, CYP-derived lipids were regulated similarly in both species. Since TRPV1 agonists such as LPA 18∶1, 9- and 13-HODE, 5- and 12-HETE were elevated in the skin, they may contribute to thermal hyperalgesia and mechanical allodynia during UVB-induced inflammatory pain. These results may explain why some studies show relatively weak analgesic effects of cyclooxygenase inhibitors in UVB-induced skin inflammation, as they do not inhibit synthesis of other proalgesic lipids such as LPA 18∶1, 9-and 13-HODE and HETEs. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Animals; Arachidonic Acid; Eicosanoids; Ganglia, Spinal; Hydroxyeicosatetraenoic Acids; Hyperalgesia; Linoleic Acid; Linoleic Acids; Lysophospholipids; Mice; Rats; TRPV Cation Channels; Ultraviolet Rays | 2013 |