linoleic-acid has been researched along with hypericin* in 1 studies
1 other study(ies) available for linoleic-acid and hypericin
Article | Year |
---|---|
Wavelength-dependent photoresponse of biological and aqueous model systems using the photodynamic plant pigment hypericin.
Photodynamic eradication of tumour cells in vivo depends on the presence of a photosensitizer, light delivery to the cells, and an oxygen supply. Hypericin, a polycyclic quinone with absorption maxima in the ultraviolet and visible ranges, was prepared for clinical use as a photosensitizer. Due to antitumoral and antineoplastic activities as well as the generation of singlet oxygen after photoexcitation, hypericin was applied in clinical oncology and photodynamic therapy. Hypericin was administered subcutaneously (20 micrograms hypericin in 200 microliters Nacl/pyridine solution) into the ante brachium (forearm) of two volunteers. After the diffusion and equilibration of 120 min phototesting was carried out using outdoor light exposure, halogen lamp, laser 514 nm (argon), laser 632 nm (argon dye) and laser 670 nm (diode laser), from 60 to 120 J cm-2. Positive phototests to outdoor light exposure, halogen lamp and laser 514 nm were characterized by rubescence, oozing, vesiculation and darting pain. Phototests with laser 632 nm and 670 nm showed no effects after irradiation. When hypericin was administered topically on skin, erythema and flaring could not be induced by any irradiation. These results suggest that hypericin is a potent photosensitizer only within the UV and green light ranges. This characteristic photoresponse could also be obtained in guinea pig papillary muscle (GPPM) bioassay, which may be established as a model for photosensitizer testing. Irradiation of hypericin-incubated GPPM with 514 nm (20 J cm-2) led to a decrease of the contractile force of about 31%. However, excitation with 632 nm and 670 nm did not cause inotropic effects on GPPM. In addition, hypericin and Photosan 3 were shown to be capable of sensitizing the photo-oxidation of sodium linoleate. This assay should be established for testing interactions between photosensitizers and light sources in vitro. Topics: Animals; Anthracenes; Biological Assay; Guinea Pigs; Lasers; Linoleic Acid; Linoleic Acids; Muscle Contraction; Oxidation-Reduction; Perylene; Photosensitizing Agents; Skin | 1996 |