linoleic-acid has been researched along with biocytin* in 1 studies
1 other study(ies) available for linoleic-acid and biocytin
Article | Year |
---|---|
The linoleic acid derivative FR236924 facilitates hippocampal synaptic transmission by enhancing activity of presynaptic alpha7 acetylcholine receptors on the glutamatergic terminals.
The present study aimed at understanding the effect of FR236924, a newly synthesized linoleic acid derivative with cyclopropane rings instead of cis-double bonds, on hippocampal synaptic transmission in both the in vitro and in vivo systems. FR236924 increased the rate of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor-mediated miniature excitatory postsynaptic currents, without affecting the amplitude, triggered by nicotine in CA1 pyramidal neurons of rat hippocampal slices, that is inhibited by GF109203X, a selective protein kinase C (PKC) inhibitor or alpha-bungarotoxin, an inhibitor of alpha7 acetylcholine (ACh) receptors. FR236924 stimulated glutamate release from rat hippocampal slices and in the hippocampus of freely behaving rats, and the effect was also inhibited by GF109203X or alpha-bungarotoxin. FR236924 induced a transient huge potentiation followed by a long-lasting potentiation in the slope of field excitatory postsynaptic potentials recorded from the CA1 region of rat hippocampal slices, and the latter effect was blocked by GF109203X or alpha-bungarotoxin. Likewise, the compound persistently facilitated hippocampal synaptic transmission in the CA1 region of the intact rat hippocampus. It is concluded from these results that FR236924 stimulates glutamate release by functionally targeting presynaptic alpha7 ACh receptors on the glutamatergic terminals under the influence of PKC, responsible for the facilitatory action on hippocampal synaptic transmission. This may provide evidence for a link between cis-unsaturated free fatty acids and presynaptic alpha7 ACh receptors in hippocampal synaptic plasticity. Topics: Alkanes; Animals; Bicuculline; Bungarotoxins; Chromatography, High Pressure Liquid; Cyclopropanes; Dose-Response Relationship, Drug; Drug Interactions; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Antagonists; Glutamic Acid; Hippocampus; In Vitro Techniques; Indoles; Linoleic Acid; Lysine; Male; Maleimides; Mecamylamine; Nicotine; Nicotinic Agonists; Nicotinic Antagonists; Patch-Clamp Techniques; Presynaptic Terminals; Protein Kinase C; Pyramidal Cells; Quinoxalines; Rats; Rats, Wistar; Receptors, Nicotinic; Receptors, Presynaptic; Synaptic Transmission; Valine | 2005 |